An encounter between prehistory and high technology, where Artec Leo comes face to face with a dinosaur skull

Product: Artec Leo
Industry: Academic

Dinosaurs – Creatures that have inspired study and research for centuries, and continue to intrigue millions of people around the world today. For the preserved remains of a triceratops roaming the Earth in prehistoric times, modern technology has attributed a status few dinosaur fossils have achieved: digital immortality.

Originally discovered in 1891 near the village of Lance Creek, Wyoming, the skull of this herbivore was exhibited at the Smithsonian Institution in Washington, D.C. until the late 1970s. He was then loaned to the CU Museum, where he now resides; the current museum was literally built around this skull.

“The Smithsonian estimated how much it would cost to tear down that wall, pull this thing out and return it, because they own it, and it was so expensive and risky that no one wanted to do it,” says Nick Conklin, Application Engineer II of Artec’s certified partner Gold, 3D Printing Colorado. This means that the skull, in principle, stays where it is, but with 3D scanning technology, there are now previously impossible possibilities.

When Conklin and his partner David Cano first visited the University of Colorado Museum of Natural History in January this year, it was for sale by a Artec Leo 3D scanner. “As we entered, we saw the skull of the triceratops and thought, ‘Hey, that would be a really cool scan, we should do it sometime!'” conklin recalls.

With each scanner that sells 3D Printing Colorado, training is included. But for Dr. William Taylor, curator of archaeology at the university, already familiar with Artec 3D scanners, another add-on was suggested.

“Dr. Taylor had already used artec Space Spider a lot, so instead of training, he decided to bring the Leo to one of his classes,” Conklin says. “He wanted us to show his students what can be done with Leo and scanning technology.”

Thus began a project of prehistoric proportions, to digitize a dinosaur skull completely.

“For 30 or 40 minutes, at one of Dr. Taylor’s night classes, I was scanning the skull of the triceratops while talking to the students, explaining what he was doing, so it was a great apprenticeship,” Conklin says. This skull scan quickly caught CU Media’s attention.

“The university’s media was everywhere, and they wanted to take pictures and videos of a dinosaur being scanned,” says Cano. “Once they found out about this, they invited us back, and this time instead of a teaching experience, it was more of a movie photo shoot,” Conklin adds.

During his second scan, something helped a lot in the session, a ladder. “With the ladder, I was able to get some details that had slipped away from me before, so it was much better,” Conklin says.

The scan took a total of 30 minutes, while the scan processing was completed in artec Studio3D software in two hours.

Using Leo, most of the surfaces were near the ground. “I was able to get everything except the top peaks from the ground with my normal range and range of motion,” Conklin says. “With his large field of view and the ease with which Leo gets the data, it was very easy. I wasn’t just scanning, as I was talking and explaining what I was doing.”

As easy to use as recording a video with your mobile, Artec Leo comes with a screen, which means you can see if you’ve captured all the areas and fill in the ones that could have been left. 3D replication is generated in real time as you scan, so you can focus on the work, how in this case, scan while demonstrating PhD students on a ladder.

“With another scanner I could have done it, but it would have been harder, I would have had to pay more attention to everything. But with Leo and how well he tracks, I was able to divide my attention between class and quality data collection. It’s definitely the best tool for this job.”

Conklin says that being able to access the skull with a ladder made the data obtained much better, as he was able to scan both the back and top of the skull and from all angles. “I liked the end result a lot more,” he says. “My biggest concern was that it’s an irreplaceable piece of archaeology, and if anything had happened to him. I don’t even want to think about it.”

Thanks to this scan, in addition to having a 3D model of the museum star, many other companies and faculties can find educational and professional opportunities. In essence, what inspires the team is the ability to do something that was previously impossible.

“Especially now that everyone stays at home, you can work from home and do whatever you want from a 3D file, such as performing simulations or conducting research,” Conklin says.

“Supporting research that would not otherwise be possible is another reason why this is important, in addition to the fact that anyone, anywhere in the world can start researching from this copy.”

From measurements to research, from global accessibility to preservation, opportunities are limitless. “Even maybe for the CGI for the next Jurassic Park movie, or video games,” Conklin suggests. “I’m excited to think about it!”

“Just to see how history is done and preserved, to see how the world changes, how something that would have been destroyed over time or for any other reason can be preserved, time passes for all, but if we can digitize things, we can go back in time eternally.”

Today, what the home of the skull has been considering is using scanning to make a mold and then create its own copy on the Smithsonian, now that they have the exact measurements of the entire skull, something they had never had before. “I don’t think we could have done it without the 3D scan,” says Conklin, who is happy to fulfill his childhood dream of wearing the archaeologist’s hat for a day. “I’ll tell you what,” he adds. “If you build a replica of this dinosaur skull from my scanning data, I’ll bring my future grandchildren to see!”

“I would like to go a step further and see what we can do with the museum in terms of digitization and help them in the long run,” Cano stresses.

easyJet Cuts Aircraft Damage Assessment Time by 80% with Geomagic Control X

Product: Control X
Industry: Aerospace

If you’ve flown anywhere in Europe in the past two decades, chances are good that you’ve flown on easyJet. This leading European low-cost airline brings travelers to more than 30 countries on 600+ routes safely and conveniently, all while offering some of the lowest fares across the continent. How do they do it? With a focus on safety, simplicity, and operational efficiency. easyJet’s engineering organization epitomizes this ethos by putting safety at the heart of everything it does and innovating to continually improve performance and reduce costs.

easyJet assesses aircraft damage faster with Geomagic Control X

Minimizing Aircraft on Ground Time

One of the most important ways that easyJet can minimize delays and keep ticket prices low is reducing Aircraft on Ground (AOG) time. Unplanned AOG events happen when any of the company’s 298 Airbus aircraft are damaged or experience mechanical failures, and can be very costly — not to mention inconvenient to passengers. It’s clear that the faster a damaged aircraft can be checked, the better it is for the airline and its passengers. 

“One of our biggest challenges is to try and reduce the AOG time of aircraft and maintain accurate records when damage occurs,” said Andrew Knight, Fleet Structures Engineer at easyJet. While rare, hail, bird strikes, and other events can potentially damage the wings and fuselage and require inspection before flying again. Checking damage from these types of events has traditionally been a low tech, manual, and time-consuming process that requires maintenance staff to assess aircraft damage using manual measuring tools such as rulers and vernier calipers. Worse still, interpreting the extent of any damage using this technique is highly subjective and not repeatable between staff members. easyJet’s structural engineering team went looking for a modern solution to speed things up and provide more accurate, traceable results.

3D scanned deviation location using Geomagic Control X

Repeatable, Accurate, Mobile 3D Inspection

“We’ve been looking for a system that is easy to use for the maintenance engineer but has the ability to provide more in-depth reports if required by support staff. It must be accurate, repeatable and most of all, mobile, as AOG events can occur anywhere within our network of 136 destinations across Europe,” Knight continued. “The biggest challenge was the software side because it needed to be a simple, easy-to-use interface to obtain a basic damage report, but powerful enough to provide more in-depth details in the support offices. 3D scanning should provide us with accurate, fast damage assessment with repeatable results independent of the experience of the user.”

For these reasons, easyJet turned to 3D Systems reseller OR3D, a UK firm with expertise in 3D scanning and Geomagic software. Robert Wells, a 3D scanning expert at OR3D, reported that “based on easyJet’s requirement to quickly scan large areas — such as the entire wing length of an Airbus A320 — on the tarmac, we recommended a portable handheld 3D scanner. And we knew Geomagic Control X™ was the right software because they needed an automated way to assess dents that was easy for their staff to learn and use.” With this solution, performing a damage assessment on the roughly 70 feet (21 meters) of an A320’s flaps takes just a few hours, compared to several days with wax rubbings on tracing paper, saving easyJet tens of thousands of Pounds/Euros per damage event.

Geomagic Control X inspection shows dent locations to easyJet quickly and accurately

Instant Reporting for Fast Documentation

Once the scans are complete, easyJet engineers can get damage reports from Geomagic Control X software on the spot. They don’t need to load CAD models or align the scan data to anything else in the software, and they don’t need to have deep metrology expertise to get reliable output. Control X uses its CAD engine to automatically create idealized geometry that meets standards for surface continuity that are defined by Airbus, and measures the scanned aircraft against that idealized geometry to provide instant results. Within minutes, easyJet engineers have a consistent, repeatable, and thoroughly documented initial damage report that lets them decide what repairs, if any, are needed before the aircraft can be placed back into service.

Powerful 3D Inspection That’s Easy to Learn

easyJet has embraced Control X for large-scale damage assessments because it’s so accessible for busy engineers with many other responsibilities. Knight remarked on this specifically, saying “engineers will not use the system if it is too complex and requires in-depth software knowledge and/or extensive training.” Control X fulfills these requirements better than any other scan-based inspection software because it’s intuitive, easy to learn, and powerful enough to handle complex measurement scenarios. Anyone familiar with using 3D software can pick up Control X and get results in a matter of minutes, with the flexibility to measure what they need to, without pre-programming or inflexible macros.

What does this new, modern approach to damage inspection mean for easyJet? “We have estimated an approximate 80% savings in time to perform assessments using the 3D systems we currently have with a potential 80% savings in currency terms,” says Knight. There are additional benefits beyond reduced AOG time and better decision-making regarding repairs as well: keeping detailed damage reports, complete with accurate scan data, can help the company years from now when it comes time to sell or return aircraft to their leaseholders.

easyJet’s use of Control X is another example of how simple, intuitive inspection software helps companies ensure quality everywhere by empowering more people to measure more things in more places. Learn more about Geomagic Control X today.

Delivering a New Life to Hernandez-Torres Conjoined Twins with 3D-Printed Anatomic Models

Product: SLA
Industry: Medical

There’s a 50 million to one chance that triplets will include conjoined twins. On top of that, there’s a six percent chance that twins of any kind will be joined near the hips.

Despite the odds, that was the situation facing the surgical team at Driscoll Children’s Hospital in Corpus Christi, Texas. Fortunately, the team was able to tap into the expertise of 3D Systems Healthcare, which has created 3D visualizations and 3D printed surgical models for more than 30 operations involving conjoined twins.

Wide-ranging team of specialists

Ximena and Scarlett Hernandez-Torres were born fused from the navel downward with separate lower limbs. The other triplet, Catalina, had a normal birth. The twins shared a colon and half of their uterus on each side. The babies’ kidneys went to the opposite baby’s bladder, so surgeons would have to reroute them to go to the correct organ.

Pediatric surgeon Dr. Haroon Patel headed up a team of medical specialists in pediatric surgery, urology, plastic surgery and orthopedics that would take on the case of the Hernandez-Torres twins.

Dr. Kevin Hopkins, working with his partner, Dr. Vanessa Dimas, was responsible for the extensive plastic surgery required before and after the twins’ surgery. Hopkins also took an expanded role in the case based on his working knowledge of what 3D Systems could offer. Since 2000, Dr. Hopkins had worked with the 3D Systems healthcare team on more than 70 cases, most involving maxillofacial surgery, but several with conjoined twins as well.

Meeting special challenges

Planning for the surgery took place over several months, as doctors had to study the shared anatomy to understand how to best separate the infants and then reorient vital organs, skin, bones, muscle and tissue to ensure each girl’s survival following the operation. 

Once the surgeons had a plan, they passed along CT scan data and information to the 3D Systems healthcare team. 3D Systems took the CT scans of the twins and set about translating them into a 3D digital environment, enhancing the relevant parts of the anatomy, simulating the surgical procedures, and translating the digital models into the physical world in the form of 3D printed anatomical models. The entire 3D Systems work took two to three weeks.

In the case of the Hernandez-Torres twins, there were some special challenges.

“Every case of conjoined twins is unique and there is always significantly abnormal anatomy in these cases,” says Joe Fullerton, Team Lead for Medical Imaging and Modeling at 3D Systems. “In this case, some of the organs were difficult to identify because they were in unexpected locations or shared between the twins.”

The ‘wow’ moment and beyond

Once the 3D models and surgical simulation were prepared, a web meeting was scheduled with all the surgeons involved in the planning and operation. It was revelatory, according to Dr. Hopkins.

“There was a ‘wow’ moment when 3D Systems showed the cuts, separated the shared pelvis, and brought the individual pelvises back together,” he says. “The reaction was ‘holy cow, we can do this’! We also saw that Scarlett had one of her kidneys displaced much lower in her pelvis than originally thought,  which only became readily apparent when we saw the 3D model.” 

Shortly after the web meeting, the surgeons received the 3D printed physical models from 3D Systems, which enabled a greater level of planning and practice.

“The physical models were fantastic,” says Dr. Hopkins. “Unlike a two-dimensional x-ray or 3D visualization, you could hold these models in your hands. They were a great way to show team members exactly where the organs were located, where the cuts would be, and how to position the patient.”

The two physical models were produced using a 3D Systems ProX® 800 stereolithography (SLA) printer. The ProX 800 is known for printing parts that match or exceed the accuracy and resolution of injection-molded parts. The ProX 800 delivers speeds up to four times faster than competitive systems and is able to accommodate a wide range of printing materials.

Translucent plastic material was used in one of the anatomical models to accurately depict the skeleton with major vasculature and organs involved in the separation procedures highlighted in color.

The other model was printed in a white plastic material to depict the surface of the skin.

“We chose that particular material because it is opaque, which is beneficial for incision planning because it clearly shows the contours of the skin,” says Fullerton.

Both models could be cleaned, sterilized and taken into the operating room for live reference during the surgery.

Saving several hours of critical time

The 3D visualization and physical models saved a great amount of time, according to Dr. Hopkins.

“We had allotted 20 hours for the operation and the entire procedure lasted around 12 hours,” he says. “I have no doubt that the visualization and models saved us at least several hours of critical operating time.”

The operation was deemed a success, with the advance planning cited as a major factor.

“If I had to use a cliché, it was like an orchestra,” said Dr. Patel in a statement following the surgery. “Everything just came together seamlessly.”

Changing the odds

Following the operation, the twins spent a couple of weeks in intensive care, where they had a relatively routine recovery. They were released in May 2016, around their first birthday. Dr. Patel and Dr. Hopkins continue to check on their progress as they undergo physical therapy.

“They are improving all the time,” says Dr. Hopkins. “We expect that both of them will be able to walk and lead a normal life.”

Ximena and Scarlett might have come into the world facing incredible odds, but thanks to the work of extraordinary surgeons, medical specialists, hospital staff and 3D technologies, the odds have made a near-miraculous turn in their favor.

Scanning pizzas fresh out of the oven with Artec Space Spider

Product: Artec Space Spider, Artec Studio
Industry: Consumer Products

When they take the pizza out of the oven, the last thing you think about is scanning it in 3D. But that’s exactly what a 3D scanning specialist did in Poland. Hours earlier, his client, the NuOrder advertising agency in Warsaw, received a call from Da Grasso Pizza, one of the most popular pizza brands in the country.

Da Grasso wanted to create animated ads for her different pizza styles, but there was a problem: how to make the pizza look as delicious as in real life. 3D modeling was quickly brazen, as it could not realistically represent all the organic shapes and surfaces of a Da Grasso pizza and its many ingredients.

That’s when NuOrder knew that 3D scanning would be ideal for the project. They contacted the Ambassador of Artec of Warsaw 3D Master to tell him the requirements of the work. 3D Master has many years of experience in a wide range of 3D scanning and printing applications, including CAD design, technical consulting and more.

For the Da Grasso Pizza project, 10 high-resolution 3D color pizzas would have to be scanned, with enough detail to show off each slice of pepperoni, onion, shiny olives, as well as its golden crust and layers of melted cheese.

Also claiming, 3D Master reverse engineering specialist Adam Rajch knew Artec Space Spider would be perfect for the task. With an accuracy of 0.05 mm, and capable of capturing incredible levels of detail in a single pass, this handheld 3D scanner has proven extraordinary for small objects in fields as diverse as quality control, reverse engineering, healthcare, forensic medicine, and other fields.

Rajch got going when he touched scan. The photo studio where the scan was performed has its own oven, which made it possible for the pizzas to be scanned at the right time. Just after leaving the oven, Rajch carefully divided each pizza into eight portions of the same size, making sure to separate them approximately one inch (2-3 cm), to allow the capture of the edges of the pizza.

From that point, it took a total of 5 to 7 minutes to scan each surface of the pizzas and all those irresistible ingredients. No sprays or markers were used in the scan. However, because the cheese was so juicy and sometimes made the surface too reflective to scan well, Rajch had to gently clean the pizza with a paper towel to absorb excess fat, making scanning much easier.

Rajch then processed the scans in Artec Studio. He first used the global register, followed by sharp blending, then simplification of the mesh by precision, and filling gaps when needed. All that was needed was to add the texture, and the 3D models were ready to be exported as OBJ files.

Once the NuOrder advertising agency received OBJ files from 3D Master, they launched their creative gears, short film specialists, 3D animation of products and TV characters responsible for achieving great results at affordable prices for sales and marketing campaigns.

NuOrder’s team of animation specialists used 3ds Max, as well as Adobe Photoshop, After Effects, and Zbrush to build the ultra-realistic 3D models and prepare them for the animation sequence. Loose elements of pizzas, such as arugula leaves, olives and cherry tomatoes, were incorporated separately.

NuOrder Creative Director Daniel Dudek described the project as this:

“We collaborated with 3D Master to create the 3D pizza scans needed for the Da Grasso spot. The challenge was that the pizza not only had to look appetizing, but the file sizes had to be optimal for the models to be easy to work with and to be able to animate in the end. Because the customer is a chain of pizzerias, photorealistic results and aesthetics were the top priority.

“In the end, the 3D scan turned out to be better than the product photo shoot. We are delighted with the result.”

You can see the results in the video:

Protocast Cuts Leadtime on High Value Casting Patterns

Product: MJP 3D Printer
Industriy: Casting

Established in 1966, Protocast-JLC is a one-stop precision investment casting manufacturer for a variety of quality- and innovation-oriented industries, including aerospace, energy, communications, medical, and military, among others. The full-service investment casting foundry has built a strong reputation among its customers for its ability to tailor production to meet customer demands, and the addition of a ProJet® MJP 2500 IC investment casting printer by 3D Systems has contributed to that reputation. In addition to helping the foundry deliver intricate, high-quality investment casting patterns faster, the flexibility of digital production has enabled Protocast to win more customers by providing a cost-effective way to fulfill orders of any volume.

Intricate, high-quality 3D printed investment casting patterns, delivered fast

Protocast specializes in the pouring of aluminum, steel, and copper-based investment casting alloys and has built a reputation among its customers for successful casting outcomes on unique parts that would be impossible to tool and injection mold. These parts include thin walls and intricate details. For example, amplifier horns on satellites, which have “hyper-thin walls” that could not be done any other way, according to Chris List, Business Development Manager at Protocast.

Protocast has built this reputation through the incorporation of additive technologies for 3D printing casting patterns. Foundry owner John List began incorporating additive technologies through third-party providers as a way to help his customers achieve more intricate parts and bypass the design limitations typical of conventional casting pattern production. However, outsourcing pattern production made it challenging for Protocast to fully set and control delivery schedules, which typically hovered around twelve to thirteen weeks when relying on a vendor to supply the pattern.

To improve self-sufficiency, predictability, and costs, Protocast purchased 3D Systems’ ProJet MJP 2500 IC, to produce castable 3D printed parts in-house. Since integrating its own 3D printer, lead time from order to delivery has shrunk from multiple months to same-week delivery.

A streamlined workflow from CAD to casting

Interior of metal cast part created by Protocast using 3D Systems ProJet MJP 2500 IC

According to Chris, who is Protocast’s primary operator of the ProJet MJP 2500 IC, 3D Systems’ digital foundry solution has helped the foundry remove steps from its previous process, particularly in aluminum castings and for detailed parts. Using conventional methods, some of the parts Protocast produces would require two to four tools to produce. “Now, we can get something printed and in someone’s hand in a week if we have to,” says Chris.

The ProJet MJP 2500 IC is a 3D printing solution for the digital foundry that uses 100% RealWax™ investment casting wax to deliver fast and cost-effective, tool-less wax patterns. By eliminating tooling, the ProJet MJP 2500 IC reduces the time and expense of transitioning from a design to a cast part, and 3D Systems’ VisiJet® M2 ICast material, a paraffin-based wax, integrates seamlessly into standard investment casting workflows. It is now possible to produce high quality cast parts in a fraction of the typical time.

The ProJet MJP 2500 IC has been a great tool for Protocast, particularly in steel castings, and performs identically to the foundry’s existing processes. Chris says the foundry is getting reliable casting results with its in-house 3D printed patterns simply by calculating shrink rates and applying them to the geometry in 3D Sprint®.

“Our customers have responded very well to these parts, and I think the time and cost savings enabled by this process contribute to that response,” Chris says. “Taking a drawing and turning it into metal has traditionally been a drawn-out process. The immediate satisfaction of holding a physical part is awesome.”

Exterior of metal cast part by Protocast produced using 3D Systems ProJet MJP 2500 IC

Transitioning to the digital foundry

Protocast reports an easy transition to the digital foundry and is now able to defy conventional limitations on casting pattern production in terms of both complexity and speed. Operationally, the main difference between life before the ProJet MJP 2500 IC and life with it, is that the foundry no longer needs to outsource casting patterns to other facilities. “We were used to using 3D models for our projects, and the software is easy to use,” says Chris, who uses 3D Systems’ 3D Sprint® software that comes with the ProJet MJP 2500 IC primarily for splitting patterns and engineering. “It’s just really easy. You can’t put it any other way,” he says.

As for the 3D printer itself, Chris says it has proven to be a valuable tool for more than final pattern production: “The machine hasn’t stopped running since we got it,” says Chris. In addition to production patterns, Protocast uses its ProJet MJP 2500 IC to produce scaled-down versions of customer parts to aid in both quoting and sales. “This capability has been very beneficial because it shows our customers we are able to get started right away, and it also gives us common ground to have engineering discussions as needed.”

Faster time to parts, high quality casting patterns, and enhanced customer communication are all great advantages. The biggest advantage of all, however, has been growth: “I think the ProJet MJP 2500 IC has opened up a new customer base for us,” says Chris. “Before, we weren’t able to accommodate as many jobs that needed flexible production quantities. Now, we don’t have to wait for any tooling and we don’t have to add twenty thousand dollars in tooling to the quote we give our customers.”

Reliable access to casting

Given the success of integrating the ProJet MJP 2500 IC into its workflow, Protocast is now considering the purchase of additional machines to continue growing its capacity and providing its customers with enhanced service.

“Managing how we’re going to produce parts is a huge deal for us and our customers,” says Chris. “The ProJet MJP 2500 IC has given us a reliable solution in that regard, and that is in addition to its ability to help us with near-instant parts-in-hand and fast quoting. It really is an amazing tool to have.”

“Good toolmakers are hard to find,” says List, “but we’ve found one with this machine.”

ADIRA introduces a new additive manufacturing process for large-scale parts

Product: Solid Edge
Industry: Industrial Machinery

ADIRA, based in the Porto area of Portugal, has a long history of success in the design and manufacture of sheet metal machinery. Its products include press breaks, shears, laser cutting systems and custom solutions. ADIRA sells its machinery in 60 different countries where it is used by manufacturers in many different industrial sectors. ADIRA’s most recent approach focuses on additive manufacturing with the development of a radical new powder bed fusion system, the AddCreator.

Additive Manufacturing with Powder and Bed Fusion

Bed-powder fusion is a relatively recent technology that was first proposed in 1995. Use a laser or electron beam to melt and fuse metal dust. Other than sintering, the fusion of powder and bed completely melts the metal powder to produce a solid and homogeneous mass. This process can quickly and accurately create high-strength and geometrically complex components. ADIRA’s unique implementation of additive powder bed fusion manufacturing is called “laser shingle fusion”.

Unique Scaling Capacity For Large Component Manufacturing

According to Tiago Oliveira, Chief Marketing Officer of ADIRA, “A unique feature of the AddCreator is the ability to apply mosaic laser fusion to large-scale component manufacturing. We have developed a modular, mobile construction chamber that moves around the dust bed area. From a manufacturing planning perspective, larger components are divided into smaller segments. By using our patented scanning strategies, the scanning fields overlap ensuring the correct “dot” of the tiles. This results in highly accurate and homogeneous parts.”

The combination of the manufacture of large components and the accuracy of 100 microns of the laser system is giving rise to interest in AddCreator from manufacturers in different segments of the industry. An example is from the aerospace industry for the manufacture of turbine rotors. These components feature curved geometries and complex internal chambers and are very expensive to manufacture using traditional machining methods.

Using Solid Edge to Design the AddCreator

ADIRA has been using Solid Edge successfully for several years for the design of its sheet metal manufacturing machinery. They are now applying this knowledge to the development of AddCreator. The complete AddCreator machine includes structural elements, sheet metal housings, a grated system for positioning the construction chamber, and high-precision electromechanical subassemblies. According to AddCreator project manager Joao Paulo Santos, “we have created an accurate 3D CAD model of the complete machine with more than 15,000 components. Solid Edge allows us to work accurately in this very large assembly. For example, our designers can specify that certain areas of the assembly become “inactive” when they focus on other areas. This improves system interactivity for our designers.”

It also describes some of the benefits ADIRA is achieving using unique synchronous technology within Solid Edge: “Synchronous technology allows us to design faster and make changes more easily. An example of the power of synchronous technology is its ability to work with 3rd-part CAD data. One of our partners provides us with STEP files of the components they develop and manufacture for us. Using synchronous technology, we access the complete 3D design, use it in our assemblies, and directly edit smart features like holes.”

Partnering with Cadflow and Siemens

It continues, “We also receive high-quality technical support from our local channel partner Cadflow. We work with Cadflow to train in specific Areas of Solid Edge for our designers. We also participate in your solid edge-specific capabilities webinars, for example, in the design of steel structure structural elements.”

In the future, ADIRA plans to investigate additional Solid Edge capabilities. These include generative design, technical publications, electrical circuit design, and enhanced data management capabilities. ADIRA uses Siemens SIMATIC Controllers for its machines. Closer integration of the mechanical, electrical and software aspects of its designs is another area in which ADIRA sees interesting possibilities for future collaboration with Siemens.

High-precision 3D scanning to design custom chassis with Artec Eva

Product: 3DArtec Eva, Artec Studio, Geomagic Design X
Industry: Automotriz y Transporte

Of the hundreds of high-performance chassis that Jason Heard and his partner Jack Fisher have created over the years, not a single one has failed. When running outdoors or around a track at breakneck speeds, apart from a serious accident, most of what can happen does not endanger the driver’s life. Whether it’s a busted engine, an electrical system failure or a transmission break, these facts are rarely fatal. A chassis failure, on the other hand, is almost certain to be lethal. That’s what makes today’s high-performance chassis designs so demanding. If the design is too light, resistance and safety are at stake. But if more materials are used, or harder, in excess, performance will resent it. Chassis design specialists at Tekk Consulting Inc in Southern California try to achieve maximum strength-to-weight ratio on every custom chassis they build.

Their impeccable reputation in the industry allows them to book customers months in advance and a steady flow of private client projects, some very important, including large OEMs. But it wasn’t always like that. In 2018, with more than a decade of chassis design to its credit, Tekk Consulting Inc. had reached a point where, although the technical aspects of its work were perfect, they were constantly in a race against time to complete their projects while maintaining the high standards for which they are known.

At the time it was not possible to increase the number of customers, and that meant not being able to assume the volume of projects needed to take the lead in the crazy chassis design industry. So Jason and Jack completely analyzed their workflow. They started by looking for ways to do it faster and more effectively, without sacrificing quality in the slightest. One of the first things they focused on was how they were measuring the bodies, parts and components of cars. The traditional method of using gauges, tape metrics, and rules was how they ensured that dimensions were accurate. But it was a terribly slow process, which required hours and even days for each project. They began reading about car customizers and stores that use 3D scanning to replace manual measurement methods. I saved them hours on every project, they read. They soon found their site on artec’s 3D website. Artec Eva caught his eye. A lightweight handheld 3D scanner, Eva captures millions of points every second, in minutes creating high-precision 3D models of auto parts and many other types of objects. So they called their local Artec dealer to arrange an on-site demonstration.

As Heard says, “That’s how it was. In the first 15 minutes of the demonstration, we learned that we had found our answer. So we bought it at the time. I didn’t need any training, it’s that easy to use. We didn’t even read the manual. We just bought it and then spent the rest of the afternoon scanning around the store. At the end of the day, we had our workflow underway.”

Since then, Tekk Consulting Inc has used its Artec Eva every day, in hundreds of projects including Brad Deberti’s @ThePerformanceTruck, jobs for the top 10 automakers, as well as all kinds of classics, muscle cars, multiple SEMA projects, and much more. Heard explained: “If you ask someone who works in this business, they’ll tell you this: your reputation is your life. Regardless of the reason, you don’t have to take shortcuts, because safety is everything, and never ever bite more than you might want. That means you don’t have to take shortcuts, because safety is everything, and never ever bite more than you can chew.” He continues, “Our Artec Eva gives us the power to do more and better than ever before. Without sacrificing accuracy or safety. In fact, we can now digitally capture any body structure or partial geometry presented to us, no matter how complex. Fast and accurate.”

I heard you described your scanning workflow with Eva: “For the parts and components, I built a small turntable on which I scanned the parts. If they are bright, I use some baby talcum powder or an aerosol diffuser. That adds something like 1/5000 inch to the surface lining, so it doesn’t affect the scan quality at all.” He continued: “Then I scan the piece, two passes on one side, two passes on the other, just to make sure I have it all. Then for the parts of the component machinery, to get the exact space between the bolt holes, and the holes themselves, for example, only draw them in Geomagic Design X after measuring them with a micrometer. That’s super easy and fast.” “When we’re scanning bodies and cabs,” Heard says, “we usually scan geometry broadly first. Then more slowly we’re going to scan parts of here or there. Then we align them with the scan of the first pass. After this we process the scans in Artec Studio.”

He explained his process in the Artec Studio software: “I use the Eraser tool, which allows me to easily erase everything I don’t want. The base of the turntable, any accessories, etc. Depending on how long I have, sometimes I do a self-alignment, or do it manually, and then after everything is aligned, I make a Global Record, etc.” “But in large cabins and structures, I don’t do Global Registration, I just limit myself to Sharp Fusion, because it works perfect to keep everything together and compact. After that, the scans are exported to Design X/SOLIDWORKS 2020, where they begin designing the chassis.

Eva made it possible for Tekk Consulting Inc. to maximize the space inside the truck (@ThePerformanceTruck), “where the chassis tubes are perfectly positioned against the truck deck,” which also means having extra space inside the cab, so that the head is far enough away from the chassis itself. As a safety factor, in Heard’s words, “It’s a pass.”

In the event that the car or truck is overturned, there should always be sufficient distance between the chassis and the head. With Eva, they’ve been able to maximize this. “And that for us is an incredible plus. It is the direct result of having a perfect scan of the car or truck body, which allows us to design a chassis that fits like a glove.”

Every car customizer that has ever needed CAD files from an OEM knows of the frustration, even from time to time, of waiting and waiting for them to arrive. When project deadlines approach and customers despair, that’s when patience runs out. As Heard says, “If we had to wait for CAD files before we get to work, there would be no way we could meet the tight deadlines we have, by any means. Now we don’t have to wait. We scan it ourselves, whether it’s a Porsche or a Toyota or a batch of parts, whatever.”

“And when we compare our scans with Eva with the CAD files that finally appear… wow! You wouldn’t believe how similar they are. At first we were surprised, but after hundreds of projects, we got used to it. Now we don’t even wait for CAD files. We just scan and get to work. That alone has saved us days of waiting.”

When it comes to working with classic cars, rarely, if ever, are such CAD files. That’s when 3D scanning becomes a decisive factor in the project. Heard explained: “With Eva, I can scan entire parts or chassis of classic cars.” He continued, talking about the possibilities, “I can transform it however I want into Geomagic, print it in 3D or mill it with CNC, or sell it online to companies around the world that do this kind of work. Stores with few workers who are manufacturers or builders and produce between 10 and 20 cars a year, thus operating 90% of the sector.” As for manufacturing tolerances as part of the process, these are also noticeable when scanning 3D cabs and bodies directly from the assembly line. According to Heard, “CAD files from OEMs are known to not take into account manufacturing tolerances.” He explains, “If you work with an American car, you could have a 1/4 deviation,” and that would be acceptable. In a really expensive foreign car, for example, it will be maybe 1/8″. Our scans with Eva are much more accurate than that. So when we look at the differences between 3D scans and CAD files, we consider those tolerances.”

Much more can be scanned in a day than can be measured by hand, Heard said: “For example, yesterday morning I scanned the front suspension of a new Raptor, 360 degrees, everything. Then I scanned five different race seats, added to the frame geometry, and now the scans can be taken to any CAD file when we are designing the chassis, so these seats will be perfectly mounted.”

Tekk Consulting Inc. has enthusiastically adopted 3D scanning with Eva that they have started selling their scans online through their digital market in Over the years they have been contacted by hundreds of car customizers and chassis designers in many countries around the world. And the market just makes it grow. Heard has been recommending Artec Eva to everyone in the sector. In his words, “I totally agree to share what we do here. Including details about the amazing technology we’ve been using. Thanks to our Eva, we are where we are today, with a lot of backlog and the ability to choose our projects.” Jason Heard imagines a future in which, “Every car workshop and designer will have their own 3D scanner and printer. The market is already moving in this direction. Specialists around the world will create digital content, for use in their stores, or to sell online to other customers.”

He also tells us: “An example: an Italian takes his Eva and scans a new Ferrari, or a classic one, with the parts he wants, fenders, bumpers, etc., and hours later he put it all together in a pack, or customizes it and turns it into a wide body kit.”

Another aspect of Tekk Consulting Inc.’s high-performance design work is Finite Element Analysis (FEA) on scanned components, usually through thin layer approximation. This involves capturing the precise dimensions of the parts and then analyzing their mechanical strength and stiffness, or how much they can bend and what that deviation looks like in the CAD. This process allows them to redesign a component to solve a point of failure, while ensuring that the component works the same or better than before.

In the past that required hand-measuring these components, which often took hours, including double checking and re-measuring. But now with their Eva in hand, they’re accurately capturing those pieces in minutes. From the control axes to the swivel joints, the anti-roll bars to the entire suspensions. There is no need to re-measure or recalculate.

Heard explained why that’s so crucial, “No matter how surprising your FEA is, if the data coming in is faulty, even for a fraction of a millimeter it can be a disaster. There is no way to improve those systems if they already come with measurement errors.” “Our Eve has been a big change for us. Now I’m going to take a lot of pieces and scan them before lunch. By the end of the day, we’ll have done all the tests and everything will be ready to create the final design.” To sum up the effect Eva has had on her work, Heard adds, “When you build race cars and there was a phase that used to take you 14 to 16 hours, and now it only takes you 2 to 3 hours, it’s a huge difference, not to mention the precision and safety that Artec Eva offers us.”

Using NX allows design and analysis to work together more efficiently and productively

Product: NX CAD, Simcenter 3D
Industry: Aeroespacial y Defensa

For more than 30 years, ENGINEERS at ATA Engineering, Inc., (ATA), have provided analysis and test-driven design solutions for structural, mechanical, electromechanical, and aerospace products. The company has worked on a wide variety of projects, including amusement parks, biomedical devices and electronic components.

Most of ATA Engineering’s work is done in the aerospace industry, for clients such as Orbital Sciences, Lockheed Martin Space Systems, Pratt & Whitney, NASA, Jet Propulsion Laboratory, Air Force Research Laboratory and General Atomics. There is no room for errors in this job: it is critical to meet specifications accurately, while facing strict deadlines. ATA engineers often face short production runs, sometimes even for a single unit, as a satellite component. It’s forced that they do well the first time.

ATA staff have used SOFTWARE NX™ for many years. However, they recently applied the mostrecent version of computer-aided design (CAD) and computer-aided engineering (CAE) NX software to complex real-world structures using three representative cases and found significant improvements in time and effort savings during design, analysis, and upgrade cycles.

ATA engineer Allison Hutchings defines it this way: “Real-world structures have complex design definitions and challenging analysis requirements, and both are constantly changing. NX enables you to cope with changes efficiently and productively.”

Changing model parameters without recreating geometry

The first use case involved meshing an isometric grid reflector model, such as those designed for assembly on a spacecraft. Isometric geometry provides advantages for spatial structures that must be rigid, lightweight, and durable, but the large number of surfaces implies that the definition of the initial geometry of the CAD model and the CAE model can be tedious. When the design needs to be updated, such as altering the diameter, focal length, and measurement of cells in this case, “these changes can cause severe headaches,” Hutchings says. In many cases, you may need to completely recreate the geometry instead of simply updating it to incorporate the new dimensions.

Leveraging Synchronous Technology provided by NX along with an intelligent approach to the original design definition, however, these issues are avoided. Several techniques, such as patterns and expressions, facilitated the direct parameterization of key geometry definitions in NX CAD and this capability was leveraged directly for meshing and analysis. As a result, 100 percent of the geometry was automatically updated and 96 percent of the riveting was performed automatically when the associated finite feature model (FEM) was upgraded to the new geometry. Cleaning the remaining 4 percent was relatively quick and easy, particularly compared to the need to recreate FEM altogether.

The second use case was a lightweight support model. Because weight is a pressing factor in aerospace designs, the engineer must struggle with competitive goals to maintain the lightest possible support while meeting stiffness requirements while maintaining the ability to handle the necessary loads. The process often results in supports with complex geometry.

In Finite Element Analysis (FEA), the standard practice is to “idealize” geometry, eliminating details and features that do not affect analysis. It is done to save calculation time, but it is often necessary to repeat the idealization process each time the part is updated.

With NX, this additional step can be avoided. For this task, after the part dimensions were changed, 93 percent was automatically idealized and updated. Although the changes that were made to the support were relatively simple, the time and effort savings were remarkable: the automated idealization of the upgrade was more than 100 times faster than the manual process and meshing of the updated model was at least 3 times faster.

Updating geometry in minutes

The third use case focused on the model of an existing air brake: a assembly that allows an aircraft to slow down to land by generating a turbulent output flow from a fan bypass nozzle and also makes it easier to landing the aircraft slower, from a steeper angle, reducing overall noise.

The blade angles inside the air brake can have a drastic effect on the performance of the air brake under different conditions. By altering these angles in the model, the analyst can evaluate those effects. In this case, the prismatic blades were rotated to analyze configurations between 0 and 25 degrees. With NX, instead of performing a tedious manual process of reshaping the entire system, Hutchings simply changed the aspa angle parameter and was able to update the geometry in minutes, as the idealized part automatically adjusted to the new angle. Hutchings comments, “Map meshing is preserved, creating an identical mesh on the blade surfaces between all angles, then the CAD model propagates to the FEM and the mesh is updated in minutes.

In all three cases, new NX features made it possible to perform geometry updates quickly, Hutchings says. “We were able to parameterize the design definition, create a structural analysis model by leveraging the design for specific analysis requirements, updating design parameters, and propagating changes to analysis modeling much faster than would have been remodeled.”

More efficient engineering with integrated design and analysis

“These are all problems that we thought were difficult to solve before,” Hutchings says. In the past, updating the finite element model due to geometry changes would involve reshaping changes in CAD, resealing the model, and riveting to create FEM, or some very complex manual changes in meshing. Both options took quite a while. “Recent additions to NX have made these efforts much easier. The degree of connection NX makes possible between design and analysis more efficiently supports engineering compared to the use of non-integrated finite element processes,” he says.

The problems Hutchings examined illustrate the advantages of working with the integrated NX range. This is not only an improvement in the refresh rate, but also the possibility of failure between the CAD model and the finite element model is also less due to the way they are linked. “If you work with constantly changing design specifications, it’s very fast and easy to modify dimensions and change parameters with NX, without having to recreate finite element models,” he says. “This saves a lot of time and effort on tedious tasks, as well as providing confidence that the model will be updated to the correct design definition.”

Mao Zedong’s horse was turned into a 3D model, twice

Producto: Artec EVA
Industry: Design and Art

A controversial figure in the Western world, Mao Zedong stands out from the crowd of national leaders and other historical personalities for hundreds of millions of Chinese. The legacy of the founder of the People’s Republic of China is revered, thoroughly studied, and passed down from generation to generation.

A chapter in Great Helmsman’s life story was recently updated as 3D scanning technology was called upon to preserve for posterity the appearance of Chairman Mao’s favorite horse, which was taxidermied shortly after he died of old age.

What makes the horse so special?

Legend has it that the horse, nicknamed Little Blue One, saved its owner’s life during the Chinese Civil War (1927-1949). Who knows if modern China would be the way it is today if Mao’s horse had made a move at the wrong time during a military withdrawal operation called The Long March (1934-1935)

One afternoon, while Mao and his comrades were being chased by rival Kuomintang squads, Little Blue One with his owner on his back stopped under a cliff they were passing by. No one could understand why the horse simply refused to move until they heard a roar coming from afar – moments later, enemy combatants buzzed overhead. Thanks to Little Blue One, the group went unnoticed in the shadow of the cliff.

At the end of the Civil War, Mao brought his Little Blue, a horse with military merits at the time, to Beijing, where he lived his life in a special enclosure at the Beijing Zoo, until his death in 1962.

Conservation project: completed and reopened

Soon after, the Beijing Museum of Natural History ordered a taxidermy mount of the legendary stallion. After the work was done, the precious relic was taken to the Revolutionary Memorial Museum in the city of Yan’an, northwest China, where the Communist Party had its headquarters from 1935 to 1947.

As time passed, small cracks began to show up here and there, threatening to cause the entire mount to crumble, making the urgent need for restoration really pressing.

Before embarking on the project, the museum administration decided to make a high-precision digital copy of the support to compare its condition before and after restoration. The work was commissioned to Artec 3D Beijing Onrol Technology Co., Ltd. Gold Partner, who had the required experience in 3D digital archiving.

Choosing the right 3D scanner

Every day counted. The scan should be done in the shortest time possible. The Onrol team was given just one day to scan the horse in 3D and convert the collected data into a flawless 3D model.

Attaching targets to the object for better tracking was just out of the question. Even touching it was forbidden, not to mention the use of any hardware that could pose a risk to its condition.

It didn’t take much deliberation to choose Eva as the 3D scanning tool for the project. This portable scanner has been the device of choice for quality control and heritage preservation with companies and institutions ranging from Tesla to the British Museum.

Absolutely safe to use, Eva has a flash bulb and a set of LED lights, the same as in lamps found in any room, to project a structured light beam onto the surface of an object and detect its curves with a precision of up to 0.1 mm.

Along with the object’s shape, Eva captures the texture with a color depth of 24 bits per pixel, giving more than 16 million color variations – more than the human eye can perceive. Capturing Little Blue One in true color was vital to the project.

Scanning speed mattered no less than the quality of the scans. Eva can take up to 16 frames, or snapshots, per second. Each snapshot covers an area approximately the size of a sheet of paper from A4 to A3. This field of view is ideal for working with medium and large objects, such as horseback. When moving around the object, the user takes several snapshots with the scanner of it to 3D digitize the entire surface in a minimum time, preserving all the necessary details.

Ultimately the scanner is very light (0.9kg) and easy to handle, which was another factor that tipped the scales in Eva’s favor.

On-site 3D scanning

On the appointed day, Little Blue One’s taxidermy mount was taken to a designated workshop, where scan specialists from Onrol performed scans, one holding the scanner and the other holding a laptop to which data from the scanner was transmitted.

The team used Real-Time Fusion, a tool from Artec Studio’s 3D scanning and processing software that merges the raw data into scans on the fly. In most cases, especially if the object is large and has complex geometry, full processing is required after scanning, but thanks to real-time fusion, the user can see a preview of the final 3D model on their screen during the scan and immediately understand if the collected data is complete or if some parts of the surface have been lost. Since the possibility of a second scan session was ruled out, Artec Studio’s real-time fusion played an indispensable role.

Simplified 3D data processing

Initial processing of the raw data was done on-site, taking only a few minutes. After verifying that they had gathered all the necessary data, the Onrol team headed back to their office to process the scans into a high-resolution 3D model in Artec Studio.

Artec Studio is loaded with a number of powerful features, allowing you, for example, to automatically remove the base on which the object was scanned, or to organically repair and seal holes and gaps in your scans. The software even takes care of the brightness while scanning, adjusting it to avoid overexposure. When is it really useful? If the lighting conditions were far from ideal during the scan, you may end up with one side of the object being brighter than the other and then having to spend hours fixing that. With automatic brightness adjustment, there is nothing to worry about.

The finishing touch, the texture mapping, was done at a rapid pace, all thanks to the fact that version 14 of the software, which was used in the project, saw an 800% increase in the speed of mapping textures.

Now, the 3D model was ready, and its measurements (length, width, and height) were taken.

All objectives met

Obtaining the 3D model of Little Blue One, the museum proceeded to the restoration. After it was completed, the montage was 3D scanned with Artec Eva and measured in Artec Studio again. No critical discrepancies were found between the two 3D models of the horse, attesting to the high quality of the restoration work.

The Onrol scanning team and museum administration agreed to collaborate further to monitor the condition of the restored mount so that it can be preserved centuries ahead.

The timely three-dimensional digitization of precious artifacts is key to preserving cultural heritage and advancing research in anthropology, paleontology, and a number of related fields. If they are shared or posted online, the high-resolution 3D models of artifacts can be accessed by anyone with an interest, regardless of where they are located. 3D scanning technology is an easy way to create digital doubles of fossils and specimens at excavation sites, or museum exhibits, avoiding the need for any physical contact with the object. Ultimately, 3D models can be displayed through interactive virtual reality platforms, expanding the reach of museums both locally and around the world.

HC Bio-S Quickly design high-quality layouts and templates with Siemens PLM

Product: CAM Pro
Industry: Medical Devices and Pharmaceutical

Using Solid Edge CAM Pro, medical specialist reduces time to process single  customized bone plate from six hours to two | Siemens Digital Industries  Software

Specializing in R&D and production of implantable medical devices, HC Bio-S is the first company with the ability to develop, design and manufacture dental implants in Taiwan, and has obtained GMP certification, US FDA certification and European CE certification. Since 2013, the company’s focus includes the development of artificial orthopedic implants.

Currently, about half of the company’s products are manufactured directly on turn and mill machines programmed with CAM Express. The other half requires tools in the form of accessories, templates and stamping dies, which are also manufactured with CAM Express. Frank Lin explains: “Running a test in the shortest time possible has always been what we expect from CAM Express. Thanks to the extensive technical experience of Siemens PLM Software and CADEX consultants, we have been able to accomplish our mission in less time. “


  • Reduce processing time by one third and significantly improve productivity
  • Keys to Success CAM Express to improve customizability
  • Strong support from Siemens
  • Easy to use software interface


  • Time required to process a custom bone plate reduced from six hours to two hours
  • Simulation avoided potential collisions
  • Substantially improved customization with the ability to quickly and skillfully adjust template and parameter settings