Wipro PARI reduces commissioning time by 70%

Product: Tecnomatix
Industry: Automation

Leading automation developer uses Tecnomatix Process Simulate from Siemens to validate engine assembly line in three months

Wipro PARI is a leading global developer of automation and robotic systems that was founded in 1990. Headquartered in Pune, India, its customers include established automotive original equipment manufacturers (OEMs) such as Daimler, Mahindra, Ford, FCA, TATA, VinFast, Renault Nissan, and The PSA Group.  Wipro PARI designs, manufactures, and installs complete, automated systems, including multi-station lines for machining and powertrain component assemblies.

Wipro PARI sought to digitalize their manual engineering efforts.  The company wanted to reduce work in manufacturing, eliminate unexpected software bugs that were delaying the physical commissioning process, and accelerate the time from machine commissioning to live production.

Wipro PARI selected Process Simulate in the Tecnomatix® portfolio from Siemens for their virtual commissioning (VC) solution. The VC process uses simulation technology to create a digital twin of a plant for testing changes before physically implementing them.  VC enables manufacturers to perform end-to-end virtual verification, mechanical and control systems design, as well as risk and failure mode and effects analysis (FMEA).  This solution ultimately enables engineers to avoid cost-intensive rework.

By incorporating VC into an automotive OEM project for a large machining line, Wipro PARI minimized rework by as much as 50 percent and reduced delivery time by as much as 10 percent.  “Virtual commissioning enables us to validate and optimize equipment performance for all complex use cases and failure modes early in the project lifecycle,” claims Dr. Ranjit Date, chief executive officer (CEO) of Wipro PARI.

Wipro PARI completed another VC project of a production volume-up on a brownfield engine assembly line in three months from design to shop floor commissioning.  This could have been a six-to-eight-month job in normal conditions.  In addition to improving process reliability and resolving design and process issues early on, they reduced on-site commissioning time by 70 percent.

“With Siemens’ solution, we have significantly improved performance ramp up and mitigated risks,” states Date.  They also improved collaboration between design and manufacturing by removing barriers between mechanical, electrical, and controls engineers.

The collaboration between Tecnológico de Monterrey in the Mexico City region and Siemens has resulted in the certification of students

Tecnológico de Monterrey in its Mexico City and Santa Fe campuses has introduced the Mendix Rapid Developer certification for students of the School of Engineering and Sciences. This certification, carried out in collaboration with Siemens, is unique in the country and has been awarded to students in the Cyber-Physical Systems concentration in Mexico City and the Cybersecurity concentration in Santa Fe. According to Softserve, 77% of organizations currently use low-code platforms, and Mendix is one of the most popular and highest rated globally. David Navarro, professor at the School of Engineering and Science in Mexico City, emphasizes that this certification has professional recognition and seeks to boost students’ career paths.

“Technology is advancing day by day, so it is a priority to receive certifications of this type.”

“This certification helps future engineers to boost their careers, to be more visible in the labor market and develops skills for the implementation of emerging technologies such as design and web applications.

“For engineering students it is important to be constantly updated, since technology advances day by day, so it is a priority to receive certifications of this type,” he emphasizes.

So far, the certification will continue to be offered at the Santa Fe and Mexico City campuses.

However, Professor David Navarro comments that this certification is the beginning of more collaborations.

“It is expected that more companies will seek to collaborate with us, to be able to offer different certifications and in other Tec campuses outside the Mexico City region”.

The Mendix Rapid Developer certification covers the configuration of projects in Mendix and the creation of applications with pages, as well as the deployment of these applications in the cloud.

This level of certification validates that the person has the necessary knowledge to effectively use the Mendix platform and can develop prototypes autonomously. Mendix is a low-code application creation platform used in various industries, such as industrial, pharmaceutical, banking and manufacturing, to address specific problems and improve efficiency. At the same time, this certification strengthens problem-solving skills, improves understanding of software development processes and encourages systematic thinking.

Siemens simulation software powers Continental’s digital manufacturing journey

Product: Tecnomatix
Industry: Automotive

The realm of smart automation is complex and encompasses the integration of advanced technologies and intelligent systems to enhance and automate industrial processes. Explore the convergence of simulation and smart automation between Siemens Digital Industries Software and Continental, a major player in automotive technology, dedicated to sustainable and connected mobility solutions. Explore how Siemens simulation software in the Tecnomatix® portfolio powers Continental’s digital manufacturing transformation. Dive into the intricate world where Process Simulate and Plant Simulation help coordinate a symphony of efficiency for Continental. 

Founded in 1871, Continental is renowned for pioneering technologies that ensure safe, efficient, intelligent and affordable solutions for vehicles, machines and transportation. Jakub Hamerník, Continental’s Smart Automation Manager, sheds light on the profound impact of how Siemens software enables seamless digitalization on the shop floor, transforming processes and applications to enhance production timelines and efficiency. Siemens and Continental, long-time collaborators in PLCs and control systems, have deepened their partnership in recent years, particularly focusing on simulation. A pivotal aspect of this collaboration is the development of the digital twin factory, specifically the collection of production line data for future optimization, tracking and analysis. 

A new standard: a collaborative approach to manufacturing efficiency  

Central to this partnership is the challenge of streamlining the process flow from raw material to the end of production. Siemens simulation products play a critical role in providing comprehensive process information well before the production line delivery. This marks a significant departure from the previous norm, where engineers spent three to five years on the task. With Siemens, this duration has been slashed to a remarkable one and a half years, setting a new standard in the industry. 

Thanks to the Siemens products, we have all relevant information from the process point of view prepared months before the delivery of the production line. Before, the engineers would take 3-5 years to make it. Now we are able to make it in 1.5 years.”

Jakub Hamerník, Continental, Smart Automation Manager 

In a dynamic environment where original equipment manufacturers (OEMs) frequently update their car models, Continental recognizes the imperative to deliver new products efficiently and timely. Siemens software solutions enable Continental to meet these demands, facilitating the optimization of overall equipment efficiency (OEE) on production lines. 

Continental’s vision extends beyond the production floor, aiming to integrate Siemens’ products with their manufacturing execution system (MES) and enterprise resource planning (ERP) system. The goal is to establish a complete digital twin of the factory, effectively bringing IT applications to the shop floor. This comprehensive approach will provide insights into the entire end-to-end process, enabling real-time monitoring of goods, production progress and delivery timelines. 

From concept to reality: Siemens and Continental’s strategic partnership 

A moment of revelation for Continental occurred when its production line seamlessly transitioned without collisions. The simulation-derived cycle time was accurate, allowing Continental to commence production immediately after activation—a ‘wow effect’ resonating with both Jakub and Continental management. 

Solid Edge University’s return to Mexico was a great success

On Wednesday, February 14, Solid Edge University 2024 took place at the Auditorium of the Parque Tecnológico, Tecnológico de Monterrey Campus Querétaro.

On Wednesday, February 14, industry professionals, experts and enthusiasts gathered at the annual Solid Edge University 2024 event, held at the Auditorio del Parque Tecnológico, Tecnológico de Monterrey Campus Querétaro. Organized by Siemens Digital Industries Software, the event highlighted the latest advances in design, manufacturing and collaboration powered by the Solid Edge platform. All with the intention of demonstrating how useful and accessible the latest version of Solid Edge is.

The event started at 9:00 AM and had an itinerary full of interesting sections for attendees, from stories of customers who have changed their work process with the software, to learning a little more about how Solid Edge works in practice.

The event was a success and met the expectations of the attendees, so we can expect a return of Solid Edge University to Mexico in the not so distant future, something that would not be possible without the support they have shown to the events held recently, with this we thank all attendees and invite those who could not attend in person, to register for the replay through Zoom, scheduled for February 22, starting at 4:30 PM, register here.

Teamcenter Easy Plan does what it says

Product: Teamcenter
Industry: Home appliances

Teamcenter Easy Plan at BSH Home Appliances

We love to hear how Teamcenter and Siemens Xcelerator tools help our customers succeed. This story looks at the global roll-out of Teamcenter Easy Plan at BSH Home Appliances. We were lucky enough to go straight to the heart of Germany to the BSH plant in Giengen to see the results firsthand.

I don’t know how many of you have been shopping for a new refrigerator lately, but the selection seems mind-bogglingly endless compared to what I remember from my first fridge purchase in the 1990s. It used to be that you just measured your space, tallied up your budget, and, presto, out you went to your local (Siemens) dealer to buy a classic white stand-up model with a little freezer unit on top.

Today, all this has changed. Or at least most of it. You’ll probably hit the Internet for reviews and ideas, maybe google for the best price and performance, and then the tough decisions start: which fridge do you choose?

Brands, model variations and more

First, do you want a freestanding or a built-in? Then what size exactly? What about finishings: inox, black glass, a color, or plain old white? Glossy, matte or in-between? Fridge on top and freezer on the bottom? Or vice-versa? American side-by-side doors? French doors? Mid-storage drawers? Door-in-door technology? Craft icemaker? And water dispensers of all shapes and sizes…Not only how do you select one? How do you manufacture all this choice? Earlier this year, we were lucky enough to visit BSH Home Appliances in Giengen, Germany to hear how Teamcenter Easy Plan helps.

BSH Home Appliances is one of the largest manufacturers of its kind in the world and is number one in Europe. BSH manufactures refrigerators, washing machines, dishwashers, induction cooktops, cordless vacuum cleaners, espresso machines and much more for well-known and respected brands like Bosch, Siemens, NEFF and Gaggenau.

With 62,000 employees and 41 plants worldwide (at time of publishing this blog), BSH manages a huge portfolio with hundreds of product variants on a global scale. Production can vary from plants that make only washing machines to plants like the one in Giengen, which makes only built-in refrigerators and freezers. Other BSH sites focus on small innovative appliances like espresso machines and cordless vacuum cleaners. In most cases, each of the 41 BSH sites manufacture product variants for more than one brand.

“Imagine a production line with over several hundred products,” says Philipp Winter, an IT business consultant in the Global Digital Services Department of BSH Digital Factory. “Our production lines have to adapt constantly, as well as line operators and the planners.”.

Manufacturing planning complexity

Depending on the plant, operators might build twenty-five Siemens built-in refrigerator models followed by 25 Bosch models with different tray designs and then still other different models for other brands – all on the same line. Other plants might have robotic lines that makes slightly different home appliance models for every type of consumer in the portfolio.

It is hard to imagine how one starts to organize such a complex production process on a global scale. But Philipp Winter, an IT business consultant in the Global Digital Services Department of BSH Digital Factory, and his colleague, Sacha Weckend, an industrial engineer responsible for the Teamcenter Easy Plan implementation at the Giengen, Germany plant were happy to explain how they count on Siemens tools for manufacturing planning.

As you see, BSH uses Teamcenter® software to runs its entire product development database. In 2015, BSH extended this to all manufacturing and planning data, integrating Teamcenter and the Tecnomatix® portfolio, which are part of the Siemens Xcelerator portfolio, the comprehensive and integrated portfolio of software, hardware and services, into its digital factory ecosystem.

At most of the BSH locations, local industrial engineers and planners have access to tools including Easy Plan, which is built on top of Teamcenter, Process Simulate in the Tecnomatix portfolio and Line Designer. These tools allow BSH to organize and optimize production lines for maximum performance for globally distributed plants, complex product variation schemes, line balancing, productivity and production efficiency, human health and safety issues, robotics and even collaborative robots (cobotics).

Teamcenter Easy Plan is just very easy to use

“You reach a limit at some point where you need special software to face and challenge this complexity in manufacturing,” says Winter. “We have leveraged digital manufacturing solutions from the Siemens Xcelerator portfolio for many years. This has resulted in an accurate digital twin of our factory ecosystem. Now we have added Easy Plan, which is our latest planning software, to do our line balancing and all our time management on the production lines.”

“We have specific cycle times for our assembly lines,” says Sasha Weckend. “For each workstation we try to find the perfect amount of work content. You can learn Easy Plan quite fast. It is easy for me to train new colleagues, trainees and students. The user interface is quite intuitive. If you have worked with an internet browser then you know where you have to click with Easy Plan. Easy Plan is just very easy to use. I think this is why the implementation is quite seamless.”

So, thanks to some pretty special Siemens software, an accurate digital twin of the BSH factory ecosystem, and the ease-of-use of Teamcenter Easy Plan, it looks like BSH Home Appliances is well on its way to successfully tackling modern-day process and product complexity to make the fridges (and home appliances) we will want to buy in the future.

Siemens’ expansion of its production capacity in Ciudad Juarez will significantly boost its foreign sales.

Siemens Mexico, Central America, and the Caribbean have inaugurated ITESA 4, a new manufacturing facility spanning 16,000 m², focused on producing devices for energy measurement and distribution.

With a presence of 130 years in Mexico and nearly four decades in Ciudad Juarez, Chihuahua, the company highlights that the investment of over 300 million pesos is aimed at meeting the demand of the North American market, particularly in the residential sector. Alejandro Preinfalk, President and CEO of Siemens in Mexico, Central America, and the Caribbean, stated, “Through initiatives like the one we are presenting today, we will continue to collaborate as a strategic partner of Mexico to strengthen its position as a leader in digital, secure, and sustainable electrification.”

Over four implementation phases, scheduled to conclude by the end of next year, four product assembly lines will be installed and six will be relocated, specializing in manufacturing processes (CNC stamping, metal bending, welding, and painting) for metallic components and aluminum bars. As a result, a double-digit increase in export operations is anticipated. “We have estimated that this productive expansion will boost our exports by 16%, allowing us to meet the demand of our primary market,” emphasized Rolando Calderón, Manufacturing Director in the region.

María Angélica Granados, Secretary of Innovation and Economic Development of the State, emphasized the economic impact of the project and the over 260 associated direct job opportunities: “Siemens’ expansion will create employment, benefiting hundreds of families […] The development of labor skills in the manufacturing industry adds value; it’s about skilled labor […]”.

During the opening ceremony, Mayor Cruz Pérez highlighted the pivotal role played by the human factor in the area’s economic and industrial processes: “Juárez is an industrial powerhouse thanks to its people; it’s the talent and capacity of its population that place the city in a prominent position nationally and internationally”.

Marco Cosío, Vice President of Siemens’ Smart Infrastructure business, stated: “We are committed to redefining our boundaries and transforming our processes to lead the electrification of homes, industries, and communities”.

According to the company, this investment supplements other recent announcements, bringing the total investment to approximately 2.2 billion pesos and creating more than 1,000 direct jobs.

Audi uses Simcenter to enhance the accuracy and speed of simulations for EV batteries

Product: Simcenter
Industry: Automotive

Developing safer, more reliable EV batteries

Accurately predicting the thermal performance of EV batteries is perhaps the most critical challenge facing automotive original equipment manufacturers (OEMs). Batteries have a temperature zone they can operate in to avoid failure. If the battery goes outside this zone, it can reduce the battery’s lifetime or even jeopardize occupant safety.

It is therefore no surprise that Audi, a brand known worldwide for its superior premium vehicles, has formed a highly specialized team dedicated to high voltage battery system concept development. Located in Germany, this team’s contributions are crucial to Audi’s vision of designing the mobility of tomorrow and ensuring an exceptional driving experience that is digital, electric and sustainable.

Increasing thermal model accuracy

Joohwa Sarah Lee, concept development engineer, is part of this team and specializes in battery thermal performance.

“Building accurate thermal simulation models is a critical aspect of my team’s work,” says Lee. “The models themselves are very important, as they directly contribute to our goal of optimizing thermal performance of the batteries.”

In 2021, Lee and her team discovered that, for certain cases and conditions, the simulation output did not match the test measurements. As a result, Lee set out to improve the quality of these simulation models. Lee and her team selected Siemens Digital Industries Software’s Simcenter™ Engineering and Consulting services as a development partner.

“We selected Simcenter because their tools enabled a seamless connection between not only 1D and 3D models, but also connectivity to third-party tools,” says Lee. “Simcenter Engineering Services provided the technical knowledge and support to help us set up these integrations and ensure the highest possible accuracy.”

Combining 1D and 3D simulations

Traditionally, module and pack geometry have been modeled using 3D computational fluid dynamics (CFD) thermal simulation. This method has significant computational costs and can take days or weeks to complete. Additionally, extensive knowledge of parameters and 3D simulation experience is required to produce an accurate 3D model. Performing 1D system simulation is much faster, but it is often challenging to generate 1D models from a 3D model without compromising accuracy.

Simcenter Engineering Services set out to create a faster, more accurate battery stack thermal model to support Audi’s battery management systems, from the initial strategy development to validation with the rest of the vehicle’s subsystems. These models needed to consider several parameters, including current, coolant temperature variations, connectivity with 1D electrical models and integration with MATLAB/Simulink. Lee and her team provided the Simcenter team with test cases and boundary conditions for a variety of scenarios.

A customized workflow

By combining Simcenter STAR-CCM+™ software and Simcenter Amesim™ software, which are part of the Siemens Xcelerator business platform of software, hardware and service, Simcenter Engineering Services experts developed a semiautomated workflow to generate a 1D system-level model in Simcenter Amesim from a 3D Simcenter STAR-CCM+ model. The purpose of this workflow was to make sure Audi’s 1D simulation users could benefit from the high level of detail provided by 3D models while also maintaining the speed of 1D simulation.

Using specified inputs, Simcenter STAR-CCM+ was used to calculate several steady state conditions covering the chosen design space, such as inlet coolant temperature, flow rate and current. The data can then be used to derive a 1D electro-thermal model for investigating transient scenarios for the complete stack.

Reducing time, increasing accuracy

The workflow developed by Simcenter Engineering Services experts has reduced the computational time of battery thermal simulations to just minutes. One of the most vivid examples is simulating an EV battery charging scenario from 10 percent battery capacity to 80 percent.

“As a result of our project with Simcenter Engineering Services, we were able to reduce the simulation time of the charging scenario from almost an entire day to less than a minute,” Lee says. “This is a huge difference in calculation time. We have also seen a significant improvement in the simulation results, especially for thermal behavior studies.

“We explored other solutions for this problem, but no other company offered the level of connectivity between tools that Siemens did. Combining a detailed 3D model in Simcenter STAR-CCM+ with the speed and efficiency of Simcenter Amesim and third-party tools supported by the Simcenter Engineering Services team provided a crucial advantage. We are also excited to explore other aspects of the Simcenter portfolio, including Simcenter Battery Design Studio.”

Lee and her team are optimistic about the future of their partnership with Simcenter Engineering Services.

“We will continue to apply our new tools and methodologies to future challenges,” says Lee. “We are thankful for the support provided by the Simcenter Engineering Services team and their willingness and ability to help us solve difficult problems.”

×