Designing a Custom Boot for an Injured Penguin

Product: MJP Print
Industry: Medical and Forensic

Despite their tuxedoed appearance, penguins aren’t always well mannered. In the aftermath of one particular penguin scuffle among endangered African Penguins at Mystic Aquarium, Yellow/Purple (AKA “Purps”) was found to have a nonfunctional flexor tendon in her ankle. Much like an injury to a person’s Achilles heel, damage to a penguin’s flexor tendon leads to pain and difficulty in motion.

purps-aq-student-team-actgroup

Once Purps’ injury was identified, the veterinary staff at Mystic Aquarium took action with a handmade boot to immobilize, protect and support the damaged foot. Yet the animal care team knew more modern solutions were available that would not only be more durable and less cumbersome for the small bird, but also require less time than handcrafting the boot. Mystic Aquarium’s Chief Clinical Veterinarian, Dr. Jen Flower, proposed 3D printing.

The aquarium took this idea to Mystic Middle School, which had recently acquired a 3D printer through ACT Group, a local 3D Systems partner, and the rest is history. Working as a team, Mystic Aquarium, ACT Group and the middle school students came together to design and 3D print a new boot for Purps. With anatomical guidance from Mystic Aquarium’s veterinary staff and technical training from the professionals at ACT Group, the students led the design and manufacturing process using 3D Systems’ end-to-end solutions.

In a workshop facilitated by ACT Group, the students started with 3D Systems’ Geomagic Capture® 3D Scanner to scan an existing cast of Purps’ foot and then imported the data into Geomagic® Sculpt™ software where they customized the file with details like treads, hinges and closures.

3d-printed-boot-in-hand-actgroup

“The students amazed us in how quickly they picked up the software,” said Nick Gondek, Director of Additive Manufacturing and Applications Engineer, ACT Group. “It was rewarding to provide them with a technology that could keep up with their ingenuity, and to watch their creative thinking, imagination and intuitiveness lead this process.”

Once satisfied with the design, it was 3D printed on 3D Systems’ multi-material ProJet MJP 5600 3D printer. This printer enables both flexible and rigid materials to be printed and blended simultaneously at the voxel level for custom strength and elasticity. The resulting boot achieved the intended effect in durability, weight and fit, enabling Purps to walk and swim like the rest of her peers.

Innovative Surgery Guided by 3D Printing Alleviates Pain for Champion Sled Hockey Player

Product: SLA Print
Industry: Medical and Forensic

When Mark Weimer emerged from the fog of pain medication after major spinal surgery, he didn’t think about how he was feeling. He thought about what he wasn’t feeling: the pain in his quad muscles, emanating from his lower spine, that had plagued him for a year and a half.

The relief was the result of a 15-hour operation by Dr. George Frey that combined his award winning methodology for pedicle screw navigation with 3D imaging and printing technologies pioneered by 3D Systems.

Partnering for the patient’s benefit

Dr. Frey and his wife, Heidi, head up Mighty Oak Medical in Englewood, Colorado. The company’s patented FIREFLY® technology provides a simpler and faster way to accurately place pedicle screws for spinal repair while navigating around crucial anatomy such as the spinal cord, nerves and blood vessels.

From the beginning, Mighty Oak has teamed with the 3D Systems Healthcare Team in nearby Littleton, Colorado.

“We needed a 3D printing partner that was known for quality, reliability and expertise in the medical device space,” says Heidi Frey. “3D Systems has been an amazing partner at every level—they are supportive, responsive and dedicated to excellence.”

3D Systems offers an end-to-end suite of precision healthcare solutions, including virtual reality simulators, 3D printed anatomical models, and patient-specific surgical guides and instrumentation. The company also manufactures precision 3D printed medical devices.

Since the late 1990s, 3D Systems has partnered with medical device providers representing a wide variety of procedures for nearly every aspect of human anatomy. The company has developed personalized solutions for more than 100,000 surgical procedures.

3D printed spine reference model used in the surgery

Path of a champion

Dr. Frey was connected to Mark Weimer through his neuro surgeon who has treated Weimer since his initial operation after a fall from construction scaffolding partially paralyzed him in 1984. Weimer later underwent an additional spinal fusion surgery in 2001 to help correct loss of muscle strength in his right arm.

Following his injury and initial surgery, Weimer took advantage of a computer training grant to become an IT specialist in data warehousing. He also continued to pursue his love of hockey, joining a Colorado sled hockey program in 1996.

Weimer played on the 2000 national sled hockey team in Lake Placid, home of the famous “Miracle on Ice” victory of the U.S. hockey team over Russia in the 1980 Winter Olympics. In 2010, he captained the team that won the Sled Classic Championship sponsored by the National Hockey League (NHL), and the following year he starred on the Colorado Avalanche team that captured the 2011 National Sled Hockey Championship sponsored by USA Hockey.

Weimer retired after scoring a goal and an assist in the 2011 championship. He turned to coaching young sled hockey players and has stayed in shape by hand cycling. His hockey achievements were recognized by his induction into the Colorado Adaptive Sports Foundation Hall of Fame in 2012.

A complicated case

Since his accident, Weimer had always dealt with some level of nerve and spinal discomfort, but in late 2014 he started experiencing something new: severe pain in his quad muscles, along with bowel and bladder problems. Weimer’s neurosurgeon referred him to Dr. Frey for further examination.

“As the years went by, Mark’s spinal fusion and his neurological condition caused the remaining discs and vertebrae below the fusion to deteriorate,” says Dr. Frey. “This caused further compression of the nerves and spinal cord, resulting in severe neuropathic pain.”

Preparation for surgery started with a CT scan of Weimer’s spine. The results were sent to 3D Systems, which performed data segmentation to extract a 3D representation of Weimer’s spinal anatomy.

Weimer’s case was more complex than most other spinal procedures, according to Dr. Frey and Chris Beaudreau, Director of Medical Services at 3D Systems.

“Mark had bone growth over the rods inserted from his previous surgery,” says Dr. Frey. “Although the rods were being removed, any disruption to the surrounding bone could affect the placement of the FIREFLY guides, so plenty of planning was needed to work around the anatomy.”

“Due to his previous surgical procedures, there were significant imaging artifacts within the CT scan that required extensive medical image processing in order to render the anatomical area of interest into three-dimensional digital models,” says Beaudreau. “It was also going to be an extensive spinal procedure, so instead of modeling two or three vertebrae, we needed to process nine vertebrae, the sacrum bone at the base of the spine, and both hips.”

3D printing from the source

3D Systems sent the 3D models of Weimer’s spinal anatomy to Mighty Oak Medical, which used them to design the trajectory of each pedicle screw and to prepare the 3D printed guides that would determine accurate screw placement on Weimer’s spine.

Using the FIREFLY design, 3D Systems printed pedicle screw guides for each vertebra that required operation. An anatomical bone model was also printed for pre-surgical planning and reference in the operating room.

The surgical guides and bone models were printed on a 3D Systems ProX® 800, a stereolithography (SLA) system known for building parts with outstanding surface smoothness, feature resolution, edge definition and tolerances.

SLA technology was invented by 3D Systems co-founder Chuck Hull in 1983. The company continues to innovate with the technology, lowering costs while delivering ever-greater speed, capacity, accuracy and ease-of-use.

The ProX 800 offers a wide range of materials for the broadest applications and use cases. For Weimer’s reference model and screw guides, 3D Systems used a plastic material and validated process that allows parts to be sterilized for use directly in the operating room.

Surgical success and recovery

Dr. Frey operated on Mark Weimer at Swedish Medical Center in Englewood on July 22, 2016. When Weimer resumed consciousness, his most recent pains were gone and previous pains had lessened considerably.

“Mark is currently undergoing a rigorous rehabilitative process and is recovering nicely from his fusion surgery,” says Dr. Frey, who expects the recovery period to last about a year.

At 63, Weimer continues to work in the IT field and pursue hand cycling in his free time. He also enjoys watching his grandsons, ages 9 and 13, take his place on the ice as the next generation of champions.

ZetrOZ Reduces Product Time-To-Market With MJP Multi-Material 3D Printing

Product: MJP Print
Industria: Medical and Forensic

Not long ago one of the realities of the medical device industry was that a company had to have a large footprint to reach the market with an innovative product.

But an emerging generation of small companies is using a laser-focus on their product niche and new technologies such as 3D printing to break through the barriers of the past.

ZetrOZ is a prime example. The company, privately funded with about 20 employees, late last year introduced sam®, the world’s smallest ultrasound therapy system that provides an alternative to pharmaceutical-based pain treatments. 

sam stands for Sustained Acoustic Medicine, a suitable name for a device delivering long-duration, continuous ultrasound therapy that’s completely drug-free and cleared by the FDA. According to ZetrOZ, the deep-penetrating ultrasonic therapy—available only before in large, expensive machines located in the offices of healthcare providers—reduces inflammatory pain, relieves muscle spasms, improves joint and muscle flexibility, and increases local circulation.

Detailed medical device prototyped using Multi jet 3D printing technology

3D prototypes like the real thing

After nearly a year on the market, ZetrOZ needed to design a new version of sam, with the emphasis on making the casing for the device more aesthetically pleasing, both to the eye and the touch. ZetrOZ also wanted to ensure that sam can withstand the rigors of everyday use in a home environment, which could include everything that typically happens to a cell phone: people sitting on it and dropping it, cats playing with it, dirt, dust, humidity, moisture—you name it.

The updated design work was done with help from the Connecticut Center for Advanced Technology Inc. (CCAT) and a funding grant through Connecticut’s Manufacturing Technical Assistance Program, a state-legislature supported program.

CCAT uses the ProJet® 5500X (now sold as the ProJet 5600) printer to quickly produce multi-material prototypes that are not just approximations of actual products, but that look and feel exactly like injection-molded parts.

“The ProJet 5600 is a unique 3D printer,” says Eric Wold, CCAT machining applications specialist. “It has the ability to blend materials within a single part build. It is especially good for parts with over-molded features, such as a rubber grip on the outside of a handle or case.”

For ZetrOZ, the over-molding capability is critical for creating a rigid case that provides a comfortable, tactile feel.

“Working with CCAT and its 3D Systems’ printer gives us access to a wide range of printed materials,” says ZetrOZ’s Eric Kolb. “We can experiment with different material properties for strength, flexibility, surface finish, comfort and resolution.”

CCAT has developed sam prototypes using three different materials from 3D Systems: VisiJet CR-WT, a white, ABS-like material; VisiJet CR-CL, which is clear and has the translucence and strength of a polycarbonate; and VisiJet CF-BK for the over-molded areas that require a rubber-soft gripping surface.

Iterations in half the time

Over the past several months working on the new version of sam, the two Erics have leveraged 3D printing technology to forge an easy-going, clearly defined relationship.

“Basically I send a SOLIDWORKS CAD file to Eric and he does the rest,” says Kolb.

Wold converts the CAD file into STL format and loads it into 3D Systems’ 3D Sprint software to lay out the parts on the ProJet 5600 build plate. When the parts come out of the printer they are placed in an oven to remove wax used during the build process, cleaned with mineral oil in an ultrasonic machine, and gently washed with hot water and a mild soap.

ZetrOZ is refining a favored design and materials after about six vastly different design concepts were considered. It takes about a week, including shipping, for CCAT to return a 3D-printed prototype for each iteration, according to Kolb.

“If we were using a traditional injection-molding process, each prototype could take eight to 12 weeks to build and we’d probably only have time and money for one design iteration,” says Kolb. “Some new molding processes can reduce that time to a couple of weeks, but that’s still twice the time it takes us working with CCAT and its 3D Systems equipment, software and materials.”

“The quality and the detail of the 3D printer are amazing,” says Wold. “We have had people visit our facility who have been 3D printing for years and they cannot believe the fine details the printer is capable of. Parts that come out of the printer look like finished production parts, not 3D-printed prototypes.”

Skin in the game

The new, improved version of sam is not just a professional concern for ZetrOZ’s Kolb. As a runner and triathlete who has suffered from chronic injuries, Kolb is using sam to get back in shape for future competition. He’s benefiting from the controlled-release, long-duration treatment provided by sam, using the device up to four hours a day, five days a week.

“In the past I’ve never been able to use products I’ve worked on because they were for surgical procedures,” says Kolb. “It’s nice to be designing something I can touch and operate as an end user.”

Kolb expects that the more rugged and cosmetically pleasing sam will be released in the first part of 2016, providing another example of how, with the help of 3D printing, big ideas from small companies can come to market faster and less expensively than ever before.

NuVasive Taps AM Ecosystem to Optimize Spine Implant Technology

Product: DMP Print
Industry: Medical

NuVasive saw an opportunity with additive manufacturing (AM) back in 2015. The orthopedic device company recognized that the unique capability of AM to produce complex and optimized shapes could open new avenues in its design and manufacturing of minimally invasive, procedurally integrated spine solutions. The only snag was that no one at the company possessed AM experience.

NuVasive knew that it needed to partner with a service and manufacturing provider for the AM process. The result of that ultimate collaboration was that NuVasive quickly capitalized on the advantages of AM, going from design to market in just over one year with the 2017 launch of Modulus®—now a full implant line.

Picking a partner to grow expertise

Optimized spinal implant by NuVasive produced using 3D printing

Even accounting for the talent and expertise housed within the NuVasive team, hard work combined with strategic innovation allowed the company to successfully design, qualify and bring to market an optimized family of AM implants in 14 months. If this were a subtractively manufactured product, this would be no surprise: NuVasive has a 180,000 square-foot manufacturing facility in West Carrollton, Ohio, where it performs traditional manufacturing day-in and day-out. AM is another story, and the novelty of the approach to the company and its workforce presented unique challenges.

Realizing that they needed outside counsel, NuVasive first identified several topline criteria for selecting its AM expert. The quality and reliability of the available 3D printing technology were both non-negotiable. The company needed software application support to effectively manufacture a novel device. Lastly, it sought a partner that had credibility within the AM industry and could grow alongside NuVasive.

“We were not willing to take any risks in this regard,” said Jeremy Malik, Director of Product Development at NuVasive.

After conducting thorough research, NuVasive chose 3D Systems, with its Direct Metal Printing (DMP) technology and team of application engineers and AM experts, to commercialize Modulus.

Proceeding from concept to commercialization

The design philosophy behind the Modulus line was to utilize new technology in a meaningful way to deliver a final product that is innovative, as opposed to new. According to NuVasive, the company’s goal was to provide the optimal spinal implant without making significant tradeoffs in the process.

3D Systems' metal additive manufacturing machines at the Customer Innovation Center in Denver, CO

The Modulus line balances porosity with load sharing, and each independent SKU is optimized for improved radiolucency. This was achieved through topological optimization, an algorithm-based design strategy that removes excess material that serves no structural or functional purpose. A component that has been topologically optimized is lighter-weight with no adverse impact on strength. In the case of the Modulus line, topological optimization also facilitates better imaging characteristics across all shapes and sizes of implants, giving surgeons a better view into bone fusion during follow-up. In addition, the optimized lattice structure provides a fully porous architecture that creates an environment conducive for bone in-growth.

“We wanted to do things we couldn’t do before,” Malik said. “There is more to this device than simply utilizing a new technology to bring it to market; we used new technology to help drive improved clinical outcomes for patients.” 

Together, the two companies generated a number of file iterations for different ways that the desired devices could be printed, and 3D Systems provided critical industry expertise on print strategies, metallurgy and residual powder removal, among other unfamiliar but impactful AM aspects.

“We didn’t know what we didn’t know,” Malik said. “3D Systems helped educate us on the additive process and worked with us to iron out our process beyond just the printing. We had a lot of open dialogue, and that communication was key to our success.”

Through the process, NuVasive leveraged 3D Systems’ Customer Innovation Centers (CICs). These facilities, and access to the expertise housed within them, provide an ecosystem of AM solutions that include design and manufacturing capabilities, along with premium hardware, software and materials. Covering everything from application development and frontend engineering, to equipment validation, process validation, part qualification and production, 3D Systems’ CICs help companies with various experience levels accelerate innovation through additive technology.

From design to production, NuVasive was able to capitalize on what the technology had to offer in terms of improved functionality without making large initial investments.

The two companies also collaborated beyond design optimization to achieve a qualified AM production workflow. Notwithstanding NuVasive’s track record in earning FDA clearance on products made with traditional manufacturing, using a new process introduced unique regulatory challenges.

According to Malik, NuVasive addressed those issues by leveraging 3D Systems’ data on manufacturing reproducibility in order to bolster its justifications in its FDA submission.

“3D Systems had customers who cleared devices through FDA in the past, so we knew we partnered with someone who had in-house expertise to help us navigate these requirements,” he said. “That was a nice safety net.”

Integrating additive into the portfolio

Fast forward to today, NuVasive is a spine leader in AM with a fully 3D-printed family of FDA-cleared spine implants on the market. The Modulus line is the result of thoughtful design, and balances the benefits of porosity and performance requirements of interbody fusion devices.

In the end, it took NuVasive roughly 14 months to go from concept to commercialization with its Modulus product line. Although this is a fairly standard timeline for traditional manufacturing processes, the company was excited that it was able to maintain the same pacing in its first application of AM.

“It is a significant undertaking to build your production process in addition to designing and building your product,” Malik said. “We were proud we had the ability to develop both, and relied on 3D Systems to help build out our datasets and justifications in order to get us to market.”

As to product manufacturing and deployment, 3D Systems provides supply chain flexibility and fulfills volume production orders internally or through certified partners, as well as helps customers transition to additive production at their own facilities through knowledge and technology transfer.

NuVasive is beginning to do its own titanium 3D printing in-house, and is using DMP technology for R&D prototyping, as well as to better understand how the machines work to continue refining its production process.

“It’s been a huge improvement for us to have that capability on site,” Malik said. “Now we have a legitimate, scalable manufacturing process and the ability for continuous improvement in the future.”

Delivering a New Life to Hernandez-Torres Conjoined Twins with 3D-Printed Anatomic Models

Product: SLA
Industry: Medical

There’s a 50 million to one chance that triplets will include conjoined twins. On top of that, there’s a six percent chance that twins of any kind will be joined near the hips.

Despite the odds, that was the situation facing the surgical team at Driscoll Children’s Hospital in Corpus Christi, Texas. Fortunately, the team was able to tap into the expertise of 3D Systems Healthcare, which has created 3D visualizations and 3D printed surgical models for more than 30 operations involving conjoined twins.

Wide-ranging team of specialists

Ximena and Scarlett Hernandez-Torres were born fused from the navel downward with separate lower limbs. The other triplet, Catalina, had a normal birth. The twins shared a colon and half of their uterus on each side. The babies’ kidneys went to the opposite baby’s bladder, so surgeons would have to reroute them to go to the correct organ.

Pediatric surgeon Dr. Haroon Patel headed up a team of medical specialists in pediatric surgery, urology, plastic surgery and orthopedics that would take on the case of the Hernandez-Torres twins.

Dr. Kevin Hopkins, working with his partner, Dr. Vanessa Dimas, was responsible for the extensive plastic surgery required before and after the twins’ surgery. Hopkins also took an expanded role in the case based on his working knowledge of what 3D Systems could offer. Since 2000, Dr. Hopkins had worked with the 3D Systems healthcare team on more than 70 cases, most involving maxillofacial surgery, but several with conjoined twins as well.

Meeting special challenges

Planning for the surgery took place over several months, as doctors had to study the shared anatomy to understand how to best separate the infants and then reorient vital organs, skin, bones, muscle and tissue to ensure each girl’s survival following the operation. 

Once the surgeons had a plan, they passed along CT scan data and information to the 3D Systems healthcare team. 3D Systems took the CT scans of the twins and set about translating them into a 3D digital environment, enhancing the relevant parts of the anatomy, simulating the surgical procedures, and translating the digital models into the physical world in the form of 3D printed anatomical models. The entire 3D Systems work took two to three weeks.

In the case of the Hernandez-Torres twins, there were some special challenges.

“Every case of conjoined twins is unique and there is always significantly abnormal anatomy in these cases,” says Joe Fullerton, Team Lead for Medical Imaging and Modeling at 3D Systems. “In this case, some of the organs were difficult to identify because they were in unexpected locations or shared between the twins.”

The ‘wow’ moment and beyond

Once the 3D models and surgical simulation were prepared, a web meeting was scheduled with all the surgeons involved in the planning and operation. It was revelatory, according to Dr. Hopkins.

“There was a ‘wow’ moment when 3D Systems showed the cuts, separated the shared pelvis, and brought the individual pelvises back together,” he says. “The reaction was ‘holy cow, we can do this’! We also saw that Scarlett had one of her kidneys displaced much lower in her pelvis than originally thought,  which only became readily apparent when we saw the 3D model.” 

Shortly after the web meeting, the surgeons received the 3D printed physical models from 3D Systems, which enabled a greater level of planning and practice.

“The physical models were fantastic,” says Dr. Hopkins. “Unlike a two-dimensional x-ray or 3D visualization, you could hold these models in your hands. They were a great way to show team members exactly where the organs were located, where the cuts would be, and how to position the patient.”

The two physical models were produced using a 3D Systems ProX® 800 stereolithography (SLA) printer. The ProX 800 is known for printing parts that match or exceed the accuracy and resolution of injection-molded parts. The ProX 800 delivers speeds up to four times faster than competitive systems and is able to accommodate a wide range of printing materials.

Translucent plastic material was used in one of the anatomical models to accurately depict the skeleton with major vasculature and organs involved in the separation procedures highlighted in color.

The other model was printed in a white plastic material to depict the surface of the skin.

“We chose that particular material because it is opaque, which is beneficial for incision planning because it clearly shows the contours of the skin,” says Fullerton.

Both models could be cleaned, sterilized and taken into the operating room for live reference during the surgery.

Saving several hours of critical time

The 3D visualization and physical models saved a great amount of time, according to Dr. Hopkins.

“We had allotted 20 hours for the operation and the entire procedure lasted around 12 hours,” he says. “I have no doubt that the visualization and models saved us at least several hours of critical operating time.”

The operation was deemed a success, with the advance planning cited as a major factor.

“If I had to use a cliché, it was like an orchestra,” said Dr. Patel in a statement following the surgery. “Everything just came together seamlessly.”

Changing the odds

Following the operation, the twins spent a couple of weeks in intensive care, where they had a relatively routine recovery. They were released in May 2016, around their first birthday. Dr. Patel and Dr. Hopkins continue to check on their progress as they undergo physical therapy.

“They are improving all the time,” says Dr. Hopkins. “We expect that both of them will be able to walk and lead a normal life.”

Ximena and Scarlett might have come into the world facing incredible odds, but thanks to the work of extraordinary surgeons, medical specialists, hospital staff and 3D technologies, the odds have made a near-miraculous turn in their favor.

HC Bio-S Quickly design high-quality layouts and templates with Siemens PLM

Product: CAM Pro
Industry: Medical Devices and Pharmaceutical

Using Solid Edge CAM Pro, medical specialist reduces time to process single  customized bone plate from six hours to two | Siemens Digital Industries  Software

Specializing in R&D and production of implantable medical devices, HC Bio-S is the first company with the ability to develop, design and manufacture dental implants in Taiwan, and has obtained GMP certification, US FDA certification and European CE certification. Since 2013, the company’s focus includes the development of artificial orthopedic implants.

Currently, about half of the company’s products are manufactured directly on turn and mill machines programmed with CAM Express. The other half requires tools in the form of accessories, templates and stamping dies, which are also manufactured with CAM Express. Frank Lin explains: “Running a test in the shortest time possible has always been what we expect from CAM Express. Thanks to the extensive technical experience of Siemens PLM Software and CADEX consultants, we have been able to accomplish our mission in less time. “

Challenges

  • Reduce processing time by one third and significantly improve productivity
  • Keys to Success CAM Express to improve customizability
  • Strong support from Siemens
  • Easy to use software interface

Solutions

  • Time required to process a custom bone plate reduced from six hours to two hours
  • Simulation avoided potential collisions
  • Substantially improved customization with the ability to quickly and skillfully adjust template and parameter settings