Dispositivo de diagnóstico rápido desarrollado con la Figura 4 Independiente

Producto: Impresión DLP
Industria: Electrónica y Semiconductores

El repentino y alarmante aumento global del COVID-19 ha puesto de relieve la importancia de una detección de enfermedades accesible y rápida. La capacidad de realizar pruebas de detección de enfermedades no sólo permite una mejor contención para evitar una mayor propagación, sino que también permite a los epidemiólogos reunir más información para comprender mejor una amenaza que de otro modo era invisible y misteriosa. Desde los medios reveladores de transmisión hasta las tasas de infección, la importancia de las pruebas para las enfermedades infecciosas se ha sentido en todo el mundo.

Un equipo de investigadores del Imperial College de Londres, dirigido por el Dr. Pantelis Georgiou, está abordando este problema de frente con un proyecto llamado Lacewing para la detección de patógenos. Ofreciendo resultados en 20 minutos desde una aplicación de teléfono inteligente sincronizada con un servidor en la nube, Lacewing hace que las pruebas de enfermedades sean portátiles, incluido SARD-CoV-2-RNA, y automatiza el seguimiento de la progresión de la enfermedad a través del geoetiquetado. Es una sofisticada plataforma de “laboratorio en un chip” que promete llenar las brechas de acceso e información en el mundo del diagnóstico mediante la combinación de biología molecular y tecnología de vanguardia. Mientras que otras tecnologías de diagnóstico requieren equipos ópticos grandes y costosos, el método de detección eléctrica y el pequeño tamaño de Lacewing es una verdadera evolución en el enfoque.

La clave entre las tecnologías detrás de Lacewing es 3D Systems Figura 4® impresora 3D independiente y materiales de grado de producción con capacidad biocompatible. Utilizado tanto para la creación de prototipos como para la producción de microfluídica y componentes funcionales, el estudiante de doctorado y asistente de investigación del Imperial College Matthew Cavuto dice que los componentes clave de Lacewing se diseñaron en función de las capacidades que sabía que tenía con la Figura 4. “La microfluídica es algo complicado, y la fabricación se ha realizado tradicionalmente a través de procesos de sala limpia lentos, costosos e intensivos en mano de obra”, dice Cavuto. “Con la Figura 4, ahora podemos imprimir rápidamente piezas con complejos canales fluídicos 3D internos para transportar fluido de muestra a diferentes áreas de detección en el chip, mejorando en gran medida nuestras capacidades de producción microfluídica”.

Tan crítico como el elemento de diseño es para este proyecto, es sólo una pieza de una solución altamente sofisticada. Más allá de la complejidad de la pieza y la fidelidad de detalle que permite la Figura 4 de 3D Systems, esta solución de impresión 3D ha ayudado al equipo de investigación a través de la velocidad de impresión, la calidad de impresión y las opciones de materiales biocompatibles.

Microfluidics cartridge for Lacewing diagnostics device 3D printed using Figure 4

Iteraciones rápidas para responder a la necesidad de pruebas de COVID-19

La plataforma Lacewing ha estado en desarrollo durante un poco más de dos años, y es una prueba de diagnóstico molecular que funciona mediante la identificación del ADN o ARN de un patógeno dentro de una muestra de paciente. Este tipo de pruebas permite determinar no solo si alguien está infectado con una determinada enfermedad (dengue, malaria, tuberculosis, COVID-19, etc.), sino en qué grado, lo que proporciona más información sobre la gravedad de los síntomas.

Antes del brote de COVID-19, el impulso para esta prueba era permitir pruebas portátiles en áreas remotas del mundo. Aunque la portabilidad a menudo se da por sentado en la era de los teléfonos inteligentes, el diagnóstico molecular tradicionalmente ha requerido piezas grandes y costosas de equipos de laboratorio. Lacewing ha reemplazado la técnica óptica anterior por una eléctrica que utiliza microchips, y ha sido rápidamente prototipada, iterada y producida utilizando los materiales independientes y biocompatibles de la Figura 4. Cada cartucho microfluídico lacewing es de aproximadamente 30 mm x 6 mm x 5 mm, impreso en capas de 10 micras.

A medida que el equipo de investigación comenzó a adaptar la prueba para responder a las necesidades globales de pruebas de COVID-19, comenzó a imprimir nuevos diseños casi a diario. Para esto, Cavuto dijo que la velocidad de la máquina era un gran beneficio. “En un momento dado, pude imprimir y probar tres versiones de un componente en particular en un solo día con la Figura 4”, dice. Esta capacidad de iterar rápidamente los diseños ha eliminado la fricción de probar algo nuevo, y la experimentación resultante y el aumento de la recopilación de información ha llevado a mejoras en el sistema en general. “Hemos pasado fácilmente por 30 versiones en los últimos 2 meses”, dice Cavuto.

El equipo diseña todas sus partes en SOLIDWORKS y utiliza el software 3D Sprint® para configurar cada compilación. 3D Sprint es un software todo en uno de 3D Systems para preparar, optimizar y administrar el proceso de impresión 3D, y ha sido útil para el equipo de investigación en la búsqueda y resolución de problemas inesperados. “Ocasionalmente obtendremos un error STL que 3D Sprint puede resolver para nosotros en la pestaña de preparación”, dice Cavuto.

Después de haber trabajado con muchas impresoras 3D diferentes en el pasado, Cavuto dice que la Figura 4 es diferente porque hay menos barreras para la impresión en términos de tiempo, costo y calidad. Con otras impresoras, se preguntaría si una impresión valió la pena en términos de tiempo y costo de material, mientras que la Figura 4 ha eliminado esa fricción. “Imprimo una pieza y veo si funciona. Si no es así, rediseño e imprimo de nuevo solo unas horas más tarde”, dice Cavuto. “Soy capaz de iterar muy rápidamente sólo por lo rápido que es la impresora.”

Los materiales verdaderamente biocompatibles no inhiben la reacción química

 Microfluidics cartridge 3D printed in Figure 4 MED-AMB 10

A pesar de las presiones de tiempo para las opciones de pruebas rápidas, la velocidad no fue el factor más importante para el equipo de investigación. Debido a que esta aplicación entra en contacto directo con el ADN, solo es posible con ciertos materiales biocompatibles.

El equipo del Imperial College está utilizando la Figura 4® MED-AMB 10, un material ámbar transparente capaz de cumplir con las normas ISO 10993-5 &-10 de biocompatibilidad (citotoxicidad, sensibilización e irritación)*, y que es esterilizable a través de autoclave. Este material se utiliza para las variedades microfluídicas translúcidas. “La Figura 4 MED-AMB 10 ha mostrado una biocompatibilidad impresionante para nuestras reacciones de PCR”, dice Cavuto. “Muchos materiales que hemos probado en el pasado los han inhibido, pero la Figura 4 MED-AMB 10 ha mostrado una baja interacción con nuestra química de reacción”. Esto es fundamental para todo el proyecto, ya que cualquier interferencia de los materiales de producción podría retrasar o impedir que ocurra la reacción prevista.

Uso de la diversa cartera de materiales de la Figura 4

El equipo no solo está utilizando la Figura 4 MED-AMB 10 para imprimir los componentes microfluídicos para Lacewing, sino que también está utilizando la Figura 4® PRO-BLK-10, un material rígido y resistente al calor de grado de producción, para el gabinete del dispositivo, y la Figura 4® RUBBER-65A BLK, un material elastomérico recién liberado, para juntas a través del dispositivo. Una parte de Lacewing está incluso hecha de la Figura 4® FLEX-BLK 20, un material con el aspecto y la sensación de polipropileno de producción. Además de la electrónica y algo de hardware, casi todo el dispositivo se produce actualmente utilizando el sistema de la Figura 4.

Totalmente limpiado y postprocesado en menos de 20 minutos

Una superficie limpia y lisa es fundamental para la funcionalidad final de los cartuchos lacewing. Por esta razón, el equipo de investigación está renunciando a cualquier capacidad de anidamiento o apilamiento de la Figura 4 para imprimir los cartuchos en capas individuales. Como el proyecto todavía está en la fase de diseño, el equipo aún no ha cargado completamente la placa de construcción, pero estima una construcción máxima de aproximadamente treinta cartuchos microfluídicos a la vez.

Dadas las sensibilidades de la aplicación, el postprocesamiento es fundamental. Una vez impresas, las piezas se lavan en un baño IPA, se curan, se lijan y se lavan de nuevo para garantizar que las piezas estén libres y libres de residuos o partículas de lijado. “Queremos evitar la contaminación a toda costa”, dice Cavuto. “Asegurarse de que las piezas estén limpias y esterilizadas es importante para una reacción exitosa y un diagnóstico preciso”.

En total, Cavuto estima que el post-procesamiento toma menos de veinte minutos, y muchas partes pueden pasar por el proceso a la vez.

Rapid diagnostics device developed using Figure 4 technology at Imperial College London

Nuevas capacidades para el desarrollo y la innovación

“La figura 4 ha cambiado lo que puedo imprimir, o lo que creo que tengo la capacidad de crear”, dice Cavuto. “En términos de resolución, velocidad, calidad de la superficie, rango de materiales y biocompatibilidad, no hay nada que se compare con la Figura 4, y probablemente he utilizado todos los tipos de impresoras 3D que pueda imaginar”.

El equipo de investigación del Imperial College planea que la prueba de COVID-19 sea validada pronto con el Servicio Nacional de Salud del Reino Unido (NHS), allanando el camino para la producción a escala en los próximos seis meses. Para obtener un vistazo completo a cómo funciona Lacewing, explore esta página de información del equipo de investigación del Imperial College.