Starburns Industries utiliza la impresión 3D para aportar un mayor realismo a Anomalisa Character

Producto: Impresión CJP
Industria: Diseño y Arte

La impresora 3D ofrece color, volumen y calidad para permitir a Starburns crear “miles y miles” de caras para marionetas de stop-motion.
“Triste”, “hermoso”, “ingenioso”, “cada personaje fascinante y audazmente realizado”: Estas no son palabras que uno suele asociar con una película en stop-motion protagonizada por marionetas.

Pero, de nuevo, la película Anomalisa es algo que no se había visto antes.

La gama de humanidad expresiva lograda en la película fue posible gracias a la impresión en color 3D de alta resolución del sistema 3D Systems ProJet® CJP 660. Starburns Industries, una compañía de producción de servicio completo con sede en Burbank, California, utilizó la impresora 3D para sacar miles de caras diferentes con detalles similares a la vida, como arrugas, sonrisas, ceño fruncido, líneas de preocupación y bolsas debajo de los ojos.

Starburns Anamolisa CJP Printed Faces

El valor estético se une a la productividad

En los últimos años, la impresión 3D se ha convertido en algo común en la industria del cine para aplicaciones como la creación de prototipos, la fabricación de accesorios y la creación de objetos que son difíciles de construir de manera tradicional. Pero, en el gran volumen de piezas y en el ámbito emocional en el que se utiliza, Anomalisa sienta nuevos precedentes para la impresión 3D en el entretenimiento.

Duke Johnson, codirector de Anomalisa, junto con Charlie Kaufman (Being John Malkovich, Eternal Sunshine of the Spotless Mind), citó la impresión 3D por ayudar a establecer los sentimientos internos de los personajes y proporcionar un mayor nivel de detalle.
Pero a pesar de todo el valor estético que el ProJet CJP 660 ayudó a aportar a los personajes, el uso de esta impresora 3D en particular se redujo principalmente a la productividad: el sistema es rápido, confiable y genera colores realistas.

El ProJet CJP 660 genera impresiones 3D a todo color en una sola ejecución sin tener que cambiar de paleta. Su área de construcción de 254 x 381 x 203 mm (10 x 15 x 8 pulgadas) permitió a Starburns sacar docenas de caras con diferentes expresiones en una sola ejecución en cuestión de horas.
“El color es el atributo más importante para nosotros, junto con la velocidad y el volumen que la máquina puede producir”, dice Bryan LaFata, Supervisor de Operaciones de Starburns Industries. “Estuvimos ejecutando el ProJet casi sin parar durante un año y medio durante la producción de Anomalisa, creando miles y miles de rostros”.

Miles de expresiones

Starburns modeló e imprimió tres diseños básicos de cabezales para Anomalisa: uno para los personajes principales Michael y Lisa, y otro para lo que se llama la “cara del mundo”, una cara compuesta modelada a partir de 20 o más empleados de Starburns. La cara del mundo fue utilizada para todos los personajes excepto Michael y Lisa.

Las caras de los personajes incluyen una placa frontal superior e inferior. Miles de expresiones fueron modeladas e impresas por Starburns para los personajes. Esto dio a los animadores acceso a casi todas las expresiones posibles para una escena dada.
“Produjimos bastidores llenos de caras para que pudieran cambiarse en cualquier momento”, dice LaFata. “Podría tomar múltiples modelos faciales solo para obtener la sonrisa correcta”.

Conservando la apariencia

Los directores de Anomalisa tomaron una decisión consciente de mantener las líneas entre las caras superior e inferior en su lugar sin aerografía digital.

James A. Fino, productor ejecutivo y socio de Starburns, explica esta decisión en un artículo en el sitio web del Gremio de Productores de América: “Las recientes características animadas en stop-motion suelen borrar esas líneas digitalmente, pero esa no fue nuestra elección para Anomalisa. En lugar de un elemento de distracción, las costuras sirven como signos sutiles y persistentes del increíble arte que se muestra en la película”.

En un artículo del New York Times de Mekado Murphy, el codirector Kaufman lo explicó de esta manera: “No queríamos ocultar el hecho de que es stop-motion. No queríamos pintar lo que era… queríamos esa sensación de la presencia invisible de los animadores”.

Starburns también hizo un post-procesamiento mínimo de las caras de los personajes, conservando la apariencia que provenía directamente del ProJet 660. Una vez más, esta era la preferencia de los directores.

“Usamos [la impresión 3D] para un propósito muy específico con el realismo que querían en las caras, y las texturas y las diferencias de color no habrían sido posibles pintando a mano”, dice Caroline Kastelic, supervisora de títeres de Starburns, en una entrevista con IndieWire. “Y es por eso que tienen esa textura agradable en ellos … Eso me parece estéticamente brillante y también nos ahorró mucho tiempo”.

Soporte local

Crear los miles de rostros, docenas de modelos de carrocería y los decorados realistas para una producción como Anomalisa requiere trabajo en equipo; no solo entre las casi 200 personas en Starburns, sino también por socios externos.

LaFata da crédito a 3D Rapid Prototyping, un socio de 3D Systems con sede en la cercana Garden Grove, California, por mantener a Starburns suministrado con materiales e incluso imprimir modelos de caras cuando sea necesario.

“Estábamos sacando muchas caras, a menudo 24/7, y Bill Craig [Presidente/CFO de Prototipado Rápido 3D] y su equipo siempre estuvieron ahí para ayudarnos”, dice.

Gran futuro para la impresión 3D

Starburns Anamolisa CJP Figures

No importa cuán fascinante sea la tecnología detrás de escena para una película, la medida final del éxito es cómo se entrega la historia. En el caso de Anomalisa, la impresión 3D no es solo un efecto especial o una pieza de conversación peculiar; es parte integral de la forma en que los personajes se desempeñan.

El enfoque parecía haber tocado un acorde: más allá de las nominaciones al Oscar y los Globos de Oro, Anomalisa fue la primera película animada en ganar el Gran Premio del Jurado en el 72º Festival Internacional de Cine de Venecia. En su reseña de cinco estrellas en la revista Rolling Stone, Peter Travers llama a Anomalisa una “obra maestra en stop-motion”.

Bryan LaFata no cree que Anomalisa sea un fenómeno único.

“La escala y la velocidad a la que puede producir modelos a todo color en una máquina como la ProJet CJP 660 es definitivamente un beneficio importante”, dice.

“Creo que la impresión 3D tiene un gran futuro para las películas en stop-motion”.

Artec Leo ayuda a Vorteq a crear los trajes de ciclismo más rápidos del mundo

Producto: Artec Leo
Industria: Diseño y Arte

En el mundo del ciclismo de alto rendimiento, la velocidad lo es todo. Y aunque estés corriendo en una pista cubierta con condiciones controladas, estarás luchando contra la resistencia del viento y su desgaste en cada pedaleo. Un ciclista gasta hasta el 90% de su energía en superar la resistencia del aire, por lo que es fundamental reducirla. Para ciclistas profesionales y aficionados, no vale la pena gastarse 10 mil dólares o más en una bicicleta más aerodinámica ya que es el cuerpo del ciclista el responsable de absorber aproximadamente el 80% de la resistencia, y su bicicleta el 20% restante. Por lo que tiene mucho más sentido centrarse en el ciclista, su biomecánica en varias posiciones de conducción, su entrenamiento, y sobre todo, su ropa.

Vorteq está utilizando un túnel de viento especializado en deportes, maquinaria textil de última generación y la mejor tecnología de escaneo 3D para crear trajes de piel personalizados para ciclistas. Un traje de piel es esencialmente la prenda más aerodinámica que un ciclista puede llevar, reduciendo su nivel de resistencia por debajo del de estar desnudo. Un traje de calidad también debe ser cómodo, ligero, transpirable y hecho específicamente para el atleta que lo lleva. De lo contrario, se ajustará incorrectamente y se arrugará, y en el campo de la aerodinámica, cada arruga aumenta la resistencia y afecta al rendimiento. Además, muchos tejidos se “abren” cuando se estiran demasiado, lo que repercute en una mayor resistencia en sus superficies, por lo que los tejidos y las costuras deben elegirse cuidadosamente para zonas específicas del cuerpo, y cada traje de piel debe diseñarse y fabricarse para que tenga la cantidad exacta de tensión para la anatomía de ese corredor en particular, así lograr un flujo de aire óptimo y la menor resistencia al viento. Teniendo en cuenta que las formas y tamaños de los ciclistas pueden variar de forma tan drástica, este tipo de ajuste personalizado no es posible simplemente con un modelo de traje de piel en varios tamaños.

La empresa filial de Vorteq, TotalSim, tiene más de 10 años de experiencia trabajando con ciclistas profesionales, equipos de ciclismo olímpicos, corredores del Tour de Francia y otros ciclistas de primera categoría. Esto ha hecho posible que Vorteq crearan lo que ellos creen que son los trajes de piel más rápidos que existen. Para diseñar sus trajes de piel como nunca antes había sido posible, Vorteq ha invertido más de 500.000 dólares en I+D, ha probado más de 45.000 combinaciones diferentes de materiales, tensión y velocidad en los túneles de viento especializados del Centro de Ingeniería Deportiva de Silverstone (SSEH). El resultado final es que cada atleta tiene su propio traje de piel, creado con patrones y tejidos personalizados, cada uno diseñado para el máximo rendimiento.

A pesar del extenso trabajo que Vorteq realiza exclusivamente con los equipos olímpicos y otros atletas de élite, desde el 1 de enero de 2020, sus trajes de piel personalizados están disponibles para corredores de todos los niveles. Ahora, cualquier ciclista, no sólo los profesionales, tiene la oportunidad de vestir un traje de piel personalizado de Vorteq, y cuando se dirijan a la línea de meta, llevarán el mismo nivel de tecnología en trajes de piel que si fueran uno de los clientes olímpicos de Vorteq.

Para crear estos trajes de piel personalizados, el uso de un escáner 3D es crucial para capturar digitalmente la anatomía exacta delciclista, y durante las horas que siguen a esos pocos minutos de escaneo, todos los tamaños, patrones y tipos de tela se seleccionan meticulosamente en el sistema de vestimenta computacional y luego ensamblados por el equipo de trajes de piel de Vorteq.

Anteriormente, TotalSim utilizaba un escáner de brazo para escanear coches de carreras, bicicletas y otros objetos, pero cuando se trataba de utilizar el escáner para capturar personas, se encontraban con grandes dificultades y eran incapaces de conseguirlo con esa tecnología.

Fue entonces cuando Vorteq recurrió al embajador de Artec, Central Scanning, especialistas en todos los campos del escaneo 3D. Durante una visita y consulta in situ, los expertos de Central Scanning les recomendaron el Artec Leo, un revolucionario escáner 3D de mano con pantalla táctil incorporada y una velocidad de captura de hasta 80 fps, un dispositivo inalámbrico que destaca por su ràpido escaneo de objetos medianos, como personas. TotalSim había utilizado dos escáneres Artec en el pasado para su trabajo de CFD y metrología, Artec Eva y Artec Spider, por lo que ya estaban familiarizados con el alto nivel de tecnología de escaneo de Artec.

Cuando Sam Quilter y sus colaboradores de Vorteq vieron lo rápido que Leo había captado la anatomía exacta y precisa de un ciclista, supieron que habían encontrado la herramienta adecuada para el trabajo. Cuando recibieron el Leo, comenzaron a crear su flujo de trabajo de captura digital, que Quilter describe así:

“El ciclista entra en el túnel de viento con su bicicleta, la coloca en la plataforma, se sube, y en sólo 5 o 6 minutos con Leo, escaneo al ciclista en dos posiciones en un 3D a color preciso y de alta resolución. Y luego necesito sólo otro minuto para escanear su zapatilla, por todos los lados”, señala Quilter. “Básicamente esto significa que en diez minutos puedo terminar con el ciclista”. Y ya tengo todo lo que necesito para diseñar un traje anatómicamente exacto y rápido como una bala de Vorteq. No es necesario volver a hacer ningún escaneo más”.

Quilter añade: “Normalmente escaneamos a los ciclistas en ropa interior, para obtener el mayor detalle posible del cuerpo, de modo que cuando diseñamos los trajes de piel, se adaptan perfectamente a la anatomía del ciclista, algo que sería imposible si hay ropa o tejidos de por medio”.

“Cuando hacemos nuestros trajes de piel, trabajamos directamente desde los escaneos de Leo, así que no son simples medidas las que tomamos, son los datos físicos exactos, y la diferencia es crucial. Porque si estás tomando medidas físicas y luego las introduces en un sistema CAD, o en un sistema de computación como el nuestro, al final acabas perdiendo datos por el camino. Y eso puede provocar dimensionados imprecisos, algo que no podemos permitirnos. Incluso un pequeño error de medición podría resultar en una arruga o que el traje se estire demasiado. Así que, para nosotros, marca la diferencia la forma en que Leo nos da los datos físicos exactos del atleta”.

Quilter resume el proceso: “Desde que el atleta entra por la puerta ya empezamos a escanear con Leo, luego usamos Artec Studio para post-procesar los escaneos, seguido por el trabajo de modelado 3D en Geomagic Wrap, y finalmente exportamos el modelo 3D para usarlo en la confección del traje de piel, estamos hablando de unas 2 horas en total, lo cual no era posible antes, ni de lejos. Y en cuanto al tiempo total de producción para un traje de piel que está listo para competir, actualmente estamos en 2 días, pero esa brecha se está estrechando, y estamos trabajando para poderlo conseguir en 24 horas, no tardaremos mucho”.

Quilter explicó su flujo de trabajo de post-procesamiento en Artec Studio: “Leo me lo pone fácil. Apenas hacen falta unos pasos más en Artec Studio. Básicamente leo los datos del escáner, compruebo todo visualmente, y luego uso la herramienta Borrador para eliminar cualquier parte no deseada. Normalmente mantengo la bicicleta en el escaneo, ya que es un gran punto de referencia para obtener el posicionamiento XYZ así como el ángulo, y luego entro en el Registro Global, donde sólo uso los ajustes predeterminados porque funcionan genial por defecto. Normalmente no necesito eliminar valores atípicos, porque los datos ya están lo suficientemente limpios para una persona. Luego hago una Fusión Suave y lo exporto como un archivo STL para usarlo en Geomagic Wrap”.

“En Geomagic Wrap, utilizo la herramienta Decimate para hacer la cuenta de triángulos, o deshacerme de alguna arruga no deseada aunque rara vez ocurre, utilizo el comando Relax, y luego paso a los comandos Smooth, que me permiten eliminar cualquier imperfección, porque a veces los atletas mueven los dedos durante el escaneo, y tenemos que corregirlo. Después de hacer todo esto lo exportamos como un archivo OBJ para usarlo en nuestro software de computación de cobertura”, dice Quilter.

La última propuesta de Vorteq es la de utilizar su Leo para crear escaneos para la impresión en 3D de maniquíes de atletas con precisión anatómica. Estos maniquíes se utilizan luego para crear nuevos trajes de piel para los atletas sin necesidad de visitar las oficinas de Vorteq. Digamos, por ejemplo, que un ciclista está entrenando al otro lado del mundo y necesita un traje de piel específicamente para una próxima prueba contrarreloj de larga distancia que es principalmente en llano, pero también incluye una larga fase de descenso. Al tener un maniquí 3D del atleta, Vorteq puede crear un traje de piel personalizado para ellos, probar múltiples telas y patrones en los túneles de viento, elaborar el nuevo traje de piel en pocas horas y hacérselo llegar allí donde se encuentre. En la actualidad, el proceso de fabricación de maniquíes a medida tarda algo menos de 2 días, pero acortamos tiempos muy rápidamente. El tiempo de entrega es de 24 horas, desde el escaneo 3D hasta la finalización del nuevo maniquí impreso en 3D.

Quilter nos cuenta las ventajas de estos maniquís impresos en 3D: “Un maniquí de tamaño natural nos permite hacer pruebas en el túnel de viento con telas aisladas en un solo brazo, por ejemplo, para ver cómo varias telas y patrones afectan a la resistencia de forma aislada. Así es como podemos obtener ventajas mínimas pero necesarias. Porque con un ciclista real en el túnel de viento, el movimiento puede ser un factor determinante, incluso el más mínimo movimiento puede afectar a los resultados. Con un ciclista en vivo, nunca puedes tener resultados exactos, pero sí con un maniquí inmovil, donde el único factor que cambia es la tela que se le pone”.

“Los maniquíes no se cansan, y siempre están quietos, lo que nos permite saber exactamente qué tipo de cambios están causando nuestras telas y diseños en términos de resistencia y rendimiento.”

TotalSim también proporciona consulta y formación en biomecánica para ciclistas y equipos, aconsejando a los atletas sobre qué posiciones del cuerpo, ajustes del equipo, hábitos de conducción y ropa mejorarán o disminuirán su potencia, resistencia y mucho más.

“Nuestra misión es ayudar a los atletas, muchos de los cuales ya están en la cima de su carrera o cerca de ella, a encontrar esas muchas ‘pequeñas’ mejoras que cuando se suman todas, pueden hacerle superar la cima y llegar a la victoria”, dice Quilter.

Además de los trajes de piel de Vorteq y los servicios de consultoría y formación en biomecánica de TotalSim, también proporcionan servicios de escaneo a una serie de clientes, incluyendo equipos de ciclismo. Su Leo es clave para escanear en 3D allá donde haga falta, ya sea en casa, en el Reino Unido o en el extranjero.

Como nos cuenta Quilter, “A diferencia de nuestros escáneres anteriores, Leo nos da esa libertad de escanear en casi cualquier parte del mundo, sin necesidad de hardware adicional, sólo el propio escáner Leo. Esta flexibilidad es esencial cuando se va a lugares fuera de las instalaciones que no son precisamente laboratorios profesionales”.

Artec Space Spider escanea el gigantesco esqueleto de Stegosaurus de 150 millones de años

Producto: Artec Space Spider
Industria: Arte y Diseño

En el Museo de Naturaleza y Ciencia de Denver (Denver Museum of Nature&Science) una de las escenas más icónicas de la exhibición de dinosaurios tiene que ser el enfrentamiento entre el Stegosaurus y el Allosaurus. El estegosaurio de 26 pies de largo representa el dinosaurio estatal de Colorado. No sólo la especie de dinosaurio, sino el espécimen individual que se adoptó para representar el estado.  El Stegosaurus era un dinosaurio herbívoro que pesaba hasta 10 toneladas y habitó el área ahora llamada Colorado hace 150 millones de años. Lo que hace que este Stegosaurus en particular sea tan especial no es el hecho de que se haya encontrado en Cañón City, Colorado, o incluso que estuviera casi completo, algo muy raro para los esqueletos de dinosaurios. Fue encontrado por una clase de estudiantes de secundaria en un viaje de campo en 1936. El maestro de esa clase, Frederick Carl Kessler, pudo hacer que sus alumnos trabajaran junto a paleontólogos profesionales para excavar el esqueleto fósil.

Mike Triebold de Triebold Paleontology, Inc. (TPI) en Woodland Park, Colorado. TPI restaura y monta esqueletos fósiles y crea esqueletos, suministrándolos a museos de todo el mundo. Los clientes de la compañía incluyen el Museo Americano de Historia Natural en Nueva York, el Museo Carnegie en Pittsburgh y el Museo Smithsonian de Historia Natural en Washington, DC. La sede de TPI alberga una colección de moldes y especímenes fósiles originales, que se exhiben en el museo práctico de historia natural de la compañía, el Centro de Recursos de Dinosaurios de las Montañas Rocosas.

Mike Triebold estaba buscando agregar un Stegosaurus a su catálogo de moldes, pero no a cualquier Stegosaurus. Estaba enfocado en conseguir para el proyecto, en la medida de lo posible al famoso Stegosaurus Kessler del Museo de Denver ya que se estaba construyendo la nueva Experiencia Royal Gorge Dinosaur en Canon City y querían una copia del Stegosaurus que Kessler cerca de Canon City. El abuelo del dueño de RGDE, Zach Reynolds, acompañaba regularmente a Kessler en excavaciones de dinosaurios desde los años 40 hasta los 60, por lo que el Stegosaurus tiene vínculos familiares y comunitarios.

Con el consentimiento del Museo de Denver, el trabajo comenzó.

La reproducción de este espécimen fue complicada por un par de factores. Uno fue el tamaño. Este dinosaurio tiene más de 26 pies de largo y además las placas altas que cubren su cuello, espalda y cola, mide más de 9 pies de alto. Normalmente, el tamaño no sería un desafío insuperable ya que cada hueso individual se moldearía en silicona y con plásticos líquidos. Sin embargo, este espécimen no es solo huesos en los estantes. Fue montado y expuesto en la década de 1990 utilizando medios puramente permanentes, por lo que no fue construido para ser desmontado. El acero se formó alrededor del esqueleto, se soldó en su sitio y se colocó de forma permanente en los huesos, por lo que se hizo imposible moldear los huesos individuales en silicona.

Para recrear este espécimen, Matt Christopher de TPI necesitaba moldearlo usando el escaneo 3D. “Necesitábamos digitalizar tridimensionalmente el esqueleto que no podía desmontarse para poder imprimir una réplica en 3D”, dice Matt. “Las dimensiones y los detalles de la superficie debían ser lo más parecido posible a los que obtendríamos de un molde de silicona para que pudiéramos terminar a mano las impresiones 3D y que reproduzcan exactamente el espécimen original”.

Para este trabajo TPI utilizó el escáner 3D estructurado de luz Spider de Artec junto con el software de escaneado y procesamiento Artec Studio 3D. El escáner fue suministrado por el socio local de Artec, 3D Printing Colorado. “Nuestro Artec Spider capturó exactamente lo que necesitábamos”, dice Matt.

El Spider se empleó para escanear huesos individuales y regiones del esqueleto como proyectos individuales en Artec Studio. “Esto requería que se gateara dentro de la caja torácica (sí, una persona adulta encaja dentro de la caja torácica de Stegosaurus) para capturar las vértebras dorsales que forman la espalda del dinosaurio y las superficies medias de la caja torácica, los omoplatos y las caderas”, dice Mate. “También hubo poses interesantes sobre una escalera de mano para llegar a la parte superior de las grandes placas en forma de abanico en la espalda del dinosaurio. Pudimos capturar todos los elementos que necesitábamos, desde la punta de la nariz hasta los enormes picos al final de la cola “.

El equipo terminó con 629 escaneos individuales a lo largo de 71 proyectos de escaneo individuales en Artec Studio. El número podría haber sido más alto, pero para ahorrar tiempo se decidió omitir el escaneo de los elementos que podrían ser tomados “en espejo” para generar el otro lado, como los brazos, las piernas y las costillas.

Cada escaneo debía alinearse, recortarse y convertirse en archivos de malla 3D en Artec Studio. “Las características de alineación en Artec Studio fueron absolutamente primordiales para el éxito de este proyecto”, dice Matt. “Alinear cada escaneo fue tan simple como orientar manualmente a una zona próxima de la posición correcta y dejar que la herramienta de alineación perfeccionara el ajuste. Usar Artec Studio para crear y controlar la malla generada a partir de los escaneos alineados nos permitió extraer el nivel exacto de detalle que queríamos para manipular e imprimir en 3D”.

Las mallas exportadas estaban libres de artefactos gracias a un filtro en Artec Studio que elimina todos los elementos que sean más pequeños que el escaneo maestro. Los pequeños agujeros se rellenaron automáticamente utilizando el algoritmo de llenado de agujeros en Artec Studio. “Si hubiéramos estado escaneando huesos individuales, no montados, habría sido fácil generar mallas completas e impermeables directamente desdeArtec Studio que no hubieran requerido post procesamiento adicional”, dice Matt. “Con la armadura de acero restante para ser removida y las superficies obstruidas para ser reconstruidas, las mallas impermeables no eran realmente una opción o una necesidad para rehacer el Stegosaurus“.

Las mallas resultantes fueron importadas a ZBrush para la separación de elementos articulados, reconstrucción de superficies que fueron imposibles de alcanzar con el escáner 3D, como por ejemplo los espacios entre los huesos articulados y la eliminación de la armadura de acero que oscurecía la superficie de algunas de las superficies óseas.

TPI tiene una variedad de impresoras 3D a su disposición que van desde una pequeña unidad de escritorio Formlabs Form2 SLA hasta una Atlas de gran formato de TitanRobotics. Con numerosas impresoras trabajando en el proyecto, imprimir el esqueleto llevó seis meses. Cuando se terminaron las impresiones, se repavimentaron ligeramente a mano y se prepararon para el moldeo añadiendo maquetas para la armadura interna de acero y articulando algunos especímenes para que se moldearan en secciones en lugar de huesos individuales. Cada hueso o conjunto completado se llama maestro. Éstos se moldearon luego en caucho de silicona utilizando cauchos de silicona líquida de alta calidad en moldes de dos partes y múltiples partes; algo que el personal de TPI ha estado haciendo durante casi 30 años.

Los moldes terminados fueron equipados con acero interno para ser rodeados por resinas plásticas en el proceso de fundición. “El plástico se vierte en el acero, por lo que no se necesita una armadura externa que oculte las superficies óseas”, dice Mike. “Con los moldes vertidos alrededor de la armadura, podemos armar el esqueleto en cualquiera de una infinidad de poses y soldar el acero que sobresale del interior de cada molde de plástico. El esqueleto montado está listo para ser pintado a mano y entregado”.

El proyecto ahora terminado se exhibirá de forma permanente en la experiencia de Royal Gorge Dinosaur Experience (www.dinoxp.com) en Canon City, Colorado, que se presentó el 19 de mayo. Zach Reynolds, su familia y su padre Dave ahora podrán compartir el logro de este importante deseo con el público.

Según Mike, este proyecto habría sido imposible de completar hace un par de décadas. “Con nuestro Spider de Artec pudimos aunar una de las mejores tecnologías actuales con los más avanzados métodos tradicionales de moldeo y fundición para crear una copia exacta de ese gran dinosaurio sin siquiera tocarlo”, dice. “Ahora, ¿qué les parece ese Allosaurus …”

Artec Eva digitaliza 500 años de historia de una de las sinagogas más antiguas del mundo

Producto: Artec Eva
Industria: Diseño y Arte

El Arca de la Sagrada Torá de Mantua es una de las más raras e impresionantes exhibiciones en el Museo Nahon de Arte Judío Italiano en Jerusalén. Diseñada para albergar los pergaminos de la Sagrada Torá y creada por los mejores artesanos de Mantua, en Italia, en 1543, esta singular arca de madera decorada con la talla dorada original es una de las más antiguas del mundo. Su estilo es similar al del Templo Sagrado de Jerusalén, que se cree que albergó el Arca de la Alianza. Fue diseñada en forma de edificio y presenta elementos arquitectónicos como columnas y capiteles.

Desde el momento de su construcción hasta el día de hoy, el Arca de Mantua ha sufrido muchas transformaciones. Finalmente, después de la Segunda Guerra Mundial, con la decadencia de la comunidad judía, el arca fue enviada a Jerusalén y colocada en su actual emplazamiento. Una vez allí, se ha sometido a una extensa renovación, preservación y restauración, que la han devuelto a su magnífico estado actual.

Sin embargo, para un visitante corriente del museo, así como para los visitantes de la página web, continúa siendo un misterio la peculiar historia del arca en cuanto a su simbolismo y sus características. Su tamaño y emplazamiento impiden una buena inspección e incluso las características que son visibles no se pueden apreciar totalmente.

En 2015, el Museo Nahon inició un proyecto para contar la historia del arca, su viaje y su significado histórico en el contexto de la vida judía italiana. La página web Mantua en Jerusalem describe la historia, la vida y la cultura de la comunidad judía de Mantua y la importancia que el arca tuvo para su gente, generación tras generación.

Esta fue la razón por la que el museo eligió embarcarse en este ambicioso proyecto: escanear el arca en 3D y permitir el acceso total a los visitantes, tanto en persona como virtualmente.

Debido a su tamaño, geometría y la complejidad de su textura, el escaneo del Arca de Mantua presentó algunas complicaciones:

  • La topografía del arca – extremadamente compleja, con numerosas áreas sin acceso directo a la vista. Además, el arca está tan cerca de las paredes del museo que deja muy poco espacio para que trabaje el equipo de escaneo, también dificulta la colocación del escáner en los ángulos adecuados para llegar a las superficies tapadas.
  • La textura. El arca fue inicialmente hecha de madera. Sin embargo, toda su superficie está cubierta por una lámina de oro, que es lisa y brillante (una de las superficies más difíciles de capturar para cualquier escáner 3D). Cuando llegó el momento de hacer el escaneo, no se permitía ni era práctico recubrir la superficie con polvo mate. Incluso si lo fuera, habría afectado a la calidad superficial del arca.
  • En tercer lugar, aunque los patrones son repetitivos también son complejos, lo que complicó un poco la alineación y la fusión de los múltiples escaneos.
  • Finalmente, el tamaño del arca (más de 3 metros de altura) hizo que el proceso de escaneo fuera aún más complicado.

Después de evaluar la complejidad del trabajo, estaba claro que era necesario utilizar una herramienta de máxima calidad para digitalizar el arca, y el museo recurrió a Caliber Engineering and Computers Ltd, Socio certificado Gold de Artec 3D en Tel Aviv. Zvi Grinberg, jefe de Calibre en ese momento, se incorporó inmediatamente al proyecto. Como era un proyecto tan distinto a los que su empresa solía llevar a cabo y era consciente tanto del reto profesional como del valor cultural único del proyecto, se ofreció como voluntario para llevarlo a cabo sin coste alguno.

Después de un minucioso examen del arca, el equipo de Caliber decidió que Artec Eva era el escáner más adecuado para el trabajo. Bautizado como ” el monstruo de los escáneres de mano”, este escáner 3D de luz estructurada destaca por escanear objetos de tamaño medio-grande con una extraordinaria precisión de hasta 0,1 mm y una resolución increíble, incluso para superficies negras y brillantes, lo que le da ventaja frente a otras soluciones de escaneo del mercado. Además, es ligero y rápido, lo que lo hace especialmente útil para capturar distintas piezas históricas, esculturas y monumentos en entornos poco propicios para el escaneo, tanto en días soleados en el exterior como en galerías poco iluminadas.

Para capturar el arca desde el suelo y dar al equipo de escaneo un acceso fácil a la parte superior del arca, se construyó un andamio especial en el museo. Normalmente usado para objetos de tamaño medio, fue un reto para Eva capturar un objeto tan grande. El equipo tardó 15 horas durante tres días en completar el escaneo, además de varios días más para alinear, limpiar y fusionar los múltiples escaneos. En total, se hicieron 78 escaneos distintos. El modelo final pesaba más de 700 MB y contenía más de 16 millones de polígonos.

“A pesar del gran tamaño del arca, hemos obtenido buenos resultados con Artec Eva desde el primer momento gracias a la textura y la geometría del objeto. Después del escaneo, fuimos capaces de terminar todo el trabajo en la oficina usando el software Artec Studio , sin necesidad de volver para escaneos adicionales ni arreglos”, dice Guy Engel, CEO de Caliber Engineering.

Después de la etapa inicial de procesamiento, el equipo de Caliber redujo el tamaño del archivo manteniendo la calidad de los escaneos originales, y retocó el modelo 3D para prepararlo para su presentación pública. En este punto, el archivo pasó de Caliber al Departamento de Comunicación Fotográfica del Colegio Académico Hadassah en Jerusalén, concretamente al Profesor Asociado Moshe Caine. Con amplios conocimientos y experiencia en soluciones de escaneo 3D y fotogrametría para la preservación del patrimonio cultural, el profesor Caine pulió el modelo 3D del arca hasta alcanzar la máxima perfección.

El flujo de trabajo de procesamiento del escaneo del profesor Caine fue el siguiente:

Ajustar y limpiar los defectos menores de la malla usando el software Autodesk (beta) Memento.

Añadir una pared trasera y suelo. Debido a que el arca estaba montada en la pared del museo, era imposible escanear la parte trasera y la parte inferior del arca. En vez de construir suelo y pared falsos, se decidió diseñar por ordenador una pared y un suelo sencillos y añadirlos al modelo.

Procesamiento de imágenes del mapa de texturas. A pesar del meticuloso trabajo durante la etapa de escaneo, todavía quedaban pequeños defectos y una interpretación inexacta del color del arca. Posteriormente se realizaron fotografías adicionales con una cámara Nikon DSLR, y las superficies corregidas se fusionaron con el mapa UV original. Se probaron varios métodos para este objetivo, incluyendo:

  • Parametrización y texturizado de los rasters en el Meshlab.
  • Exportar el mapa como un archivo PSD (Photoshop), corregir en Photoshop, reimportar y luego exportar el modelo corregido.
  • Abrir el archivo OBJ en Photoshop y trabajarlo directamente en la capa de textura. Al final, se empleó una combinación de las técnicas anteriores hasta que se obtuvieron los resultados adecuados.
  • La corrección de color se llevó a cabo en el mapa de textura final con el software Photoshop, usando el arca real como única referencia.

Tras escanear decenas de piezas históricas, el profesor Caine elaboró su método para el flujo de trabajo de escaneo y procesamiento en 3D:

“Un consejo importante (para aquellos que quieran escanear patrimonio cultural en 3D): Trabajen despacio y con cuidado. No se apresuren. Acérquense lo máximo posible al objeto. Usen una luz suave. El resultado será tan bueno como el trabajo y el cuidado que se le dedique.”

Cuando el profesor Caine terminó su meticuloso proceso de escaneo, el modelo final se subió para su visualización pública en la página web del Museo Nahon, Mantua en Jerusalem, dedicado al arte de la comunidad judía de Mantua. Además, se ha instalado un stand con una pantalla táctil junto al arca, que permite a los visitantes del museo ver la magnífica pieza histórica desde todos los ángulos, acercarse y alejarse para examinar cada detalle y lo que es más importante, tener acceso inmediato a través de puntos clave a la información más importante de este monumento.

En general, la respuesta al modelo ha sido muy positiva y exitosa. Según el personal del museo y el profesor Caine, la gente aprecia especialmente la capacidad de examinar el arca de cerca y desde todos los ángulos. Esta es la magia de los modelos 3D, con las que las imágenes 2D o incluso objetos físicos tan grandes como el Arca de Mantua no pueden competir. Proyectos como este son un ejemplo asombroso de cómo las tecnologías de escaneo 3D transforman la forma en que percibimos y podemos preservar el patrimonio cultural.

En el siglo XVI, los ciudadanos y miembros de la comunidad judía de Mantua no podían ni siquiera imaginar que, 500 años después sus descendientes no sólo podrían ver el emblemático artefacto de su comunidad de una sola pieza, sino que también podrían explorarlo de cerca en 360 grados sin siquiera salir de sus casas.

Great Pagoda, Kew, regresa a la gloria del siglo XVIII con la ayuda de 3D Systems

Producto: Impresión SLS
Industria: Diseño y Arte

La restauración es una empresa importante. Más allá del cuidado minucioso esencial para preservar y estabilizar las estructuras históricas, la restauración incluye una gran cantidad de investigación y planificación para devolver las reliquias a un estado conocido o asumido con la mayor integridad posible.

Cuando los Palacios Reales Históricos (HRP) en el Reino Unido comenzaron su compromiso de restaurar la Gran Pagoda, Kew, se enfrentó a algunos desafíos monumentales. Varios elementos clave de diseño del edificio original se habían perdido en la historia, y reemplazarlos rápidamente resultó desafiante en términos de costo, logística y diseño. Sin embargo, al aportar las tecnologías y la experiencia de la fabricación bajo demanda de sistemas 3D a este proyecto, este esfuerzo se hizo no sólo manejable, sino eficiente.

Utilizando un flujo de trabajo de escaneo a CAD con fabricación selectiva de sinterización láser (SLS), el equipo de fabricación de sistemas 3D bajo demanda proporcionó accesorios duraderos y repetibles para el esfuerzo de restauración de HRP. Lejos de ser un proceso práctico, el equipo contribuyó con muchas horas de ingeniería front-end y acabado back-end para proporcionar una experiencia de diseño y fabricación de servicio completo de alta calidad.

Patrimonio de la Humanidad de la UNESCO

Aunque la opinión popular del rey Jorge III puede estar dividida, no se puede negar el impacto de sus 59 años de reinado. Más allá de los innumerables volúmenes de extensos estudios y películas sobre su vida y su gobierno, su legado está impregnado de la tierra misma de las tierras que gobernó, particularmente en el Real Jardín Botánico de Kew. Declarado Patrimonio de la Humanidad por la UNESCO, los jardines albergan La Gran Pagoda, una llamativa estructura de 163 pies encargada en 1761 y construida al estilo chinoiserie adornado y muy de moda.

En los años posteriores a la presentación de la pagoda, atrajo a multitudes de turistas que llegaron a maravillarse con sus detalles exóticos y llamativos. El centro de todas las conversaciones fueron los 80 dragones de madera pintados que adornaban las esquinas octogonales de cada nivel sucesivo.

La charla de la ciudad durante más de veinte años, los dragones kew fueron retirados en la década de 1780 para acomodar las reparaciones del techo a la pagoda y nunca fueron reemplazados. Aunque los rumores alegan que los dragones sirvieron como pago por deudas reales de juego, los expertos creen que la madera simplemente se había podrido con el tiempo. Un tema a menudo revisitado para los conservacionistas, La Gran Pagoda finalmente está siendo devuelto a su antiguo esplendor, dragones y todo, por primera vez en más de 200 años. Como parte de un proyecto de restauración emprendido por HRP y el Real Jardín Botánico de Kew, este lote de dragones está diseñado para soportar la prueba del tiempo con especial refuerzo por tecnología moderna.

Calidad apta para un rey

A medida que HRP comenzó a explorar metodologías para reemplazar a los dragones, se enfrentó a un dilema: no sólo los reemplazos de madera invitarían al mismo problema de longevidad que antes, sino que la pagoda no había apoyado el peso de los dragones durante dos siglos. “Uno de los aspectos más desafiantes de este proyecto fue minimizar el impacto impuesto por tantos dragones en este edificio catalogado de grado uno”, dijo Craig Hatto, Director del Proyecto en Historic Royal Palaces. Preocupado de que la estructura envejecida pueda responder mal a la reintroducción repentina de 80 adornos a gran escala de peso completo, HRP quería explorar una alternativa de peso más ligero para ayudar a garantizar una instalación exitosa y sin incidentes. Junto con estas consideraciones prácticas estaban las cuestiones igualmente válidas del tiempo y los costos asociados con los materiales y procesos tradicionales.

HRP estaba buscando una solución de restauración que respondiera a las preocupaciones de calidad, peso, tiempo y costos inherentes al proyecto. Al buscar un proveedor capaz de cumplir con todos los aspectos, HRP pidió a 3D Systems que presentara una licitación competitiva, que posteriormente ganó sobre la base de poder proporcionar la experiencia, tecnología, calidad y escalabilidad necesarias para cumplir con el proyecto.

Diseñar los dragones

Los dragones de Kew fueron traídos a la vida como un esfuerzo de colaboración entre dos conjuntos de diseñadores especializados. La apariencia exterior de los dragones fue recreada por HRP utilizando la escasa información histórica disponible para lograr la representación más precisa posible. Una vez diseñado, un prototipo de dragón fue tallado en madera para permitir el flujo de trabajo de fabricación digital que siguió, emprendido por el segundo equipo de diseño e ingeniería de 3D Systems. Otros siete dragones de madera fueron tallados para adornar el primer nivel de la pagoda, dejando 72 para ser creados usando la impresión SLS.

Utilizando un flujo de trabajo de ingeniería inversa y un FARO® Design ScanArm, el dragón de madera tallada fue escaneado en un entorno de diseño 3D que permitiría a 3D Systems abordar las preocupaciones de HRP con respecto al peso. Los expertos en diseño de 3D Systems utilizaron una variedad de software, incluyendo Geomagic® Design X™ para realizar ingeniería inversa de los datos de escaneo en CAD y vaciar los datos de escaneo a un espesor controlado, preservando tanto los detalles exteriores como la integridad estructural en el proceso.

Cuando se combinaba con los intrincados exteriores de los maestros cortados a mano, la geometría hueca resultante era demasiado compleja para ser fabricada tradicionalmente y requería fabricación aditiva para la producción. El uso de un flujo de trabajo de fabricación digital también permitió a 3D Systems escalar sin problemas los dragones para lograr un tamaño ligeramente diferente para los niveles dos a diez de la pagoda. En total, se prepararon 18 diseños, compuestos por nueve tamaños de dragón diferentes y una versión izquierda y derecha de cada uno.

Los ingenieros de 3D Systems incorporaron otra característica simple pero convincente en cada uno de los diseños de dragones mediante la adición de características de montaje integradas directamente en los archivos CAD. Estos diseños constituían parte de los diseños de construcción de los dragones, y fueron ideados e implementados por el equipo de fabricación bajo demanda de 3D Systems en estrecha colaboración con Hockley &dawson, el otro equipo de ingeniería líder en el proyecto. Debido a la mecánica necesaria para el refuerzo y el montaje, cada una de las 18 variaciones del dragón requirió atención individual y trabajo de diseño.

“Los dragones finales son esencialmente una copia perfecta del original, pero han sido mejorados de una manera que es invisible para el observador”, dijo Nick Lewis, Gerente General de fabricación de sistemas 3D bajo demanda en el Reino Unido. “Diseñamos elementos internos para un proceso de montaje seguro, pero los diseñamos de tal manera que estén completamente ocultos para que no haya tuercas, pernos o rastros de construcción visibles.”

Beneficios ocultos de la fabricación aditiva

Aprovechando la capacidad de diseño para la fabricación aditiva, el equipo de fabricación bajo demanda de 3D Systems incorporó una serie de tornillos, roscas y cubiertas que siguen la forma exacta de los dragones a lo largo de la columna vertebral. “Las estructuras finales que entregamos aprovechan el valor único que se puede extraer del proceso aditivo”, dijo Lewis. “La ingeniería de esta manera es una práctica común para nosotros, pero sigue siendo milagrosa para nuestros clientes. El factor sorpresa hace que sea divertido de revelar, pero para mí se trata de ser ingenioso y resolver problemas de manera más efectiva y eficiente, lo que es un beneficio central del uso de nuestra tecnología”.

La experiencia en ingeniería de 3D Systems está integrada en cada una de las 18 versiones diferentes de los dragones que fueron impresos sls. Como señala el gerente regional de ventas de fabricación bajo demanda de 3D Systems On Demand, Simon Hammond, la capacidad de combinar la precisión con la variedad es un beneficio constante del uso de fabricación aditiva para la producción. “Muchas horas de cuidadoso trabajo de ingeniería se pusieron en los diseños finales, pero mediante el uso de un flujo de trabajo digital con cad 3D e impresión 3D, somos capaces de adelantar la inversión en tiempo”, dice Hammond. “Una vez listos los archivos finales, podríamos lanzarnos a la producción con 18 resultados diferentes sin 18 conjuntos de herramientas y moldes. Diseñar y fabricar el mismo resultado con un buen costo y un momento sensato sería un desafío para cualquier otro proceso”.

Después del escaneo y diseño 3D, los primeros prototipos de los dragones fueron impresos para su análisis y pruebas para asegurar que los diseños finales fueron construidos de acuerdo con los estrictos requisitos de la construcción moderna.

A lo largo de este proceso, 3D Systems trabajó diligentemente para cumplir con los requisitos estéticos del cliente mientras cumplía con todos los requisitos técnicos de los constructores. Estas consideraciones entraron en juego cuando los ingenieros de 3D Systems determinaron cómo dividir mejor los modelos SLS para imprimir, así como colocar y ocultar las diversas tapas y cierres para el montaje.

Producción de impresión 3D para restauración histórica

Los equipos de fabricación bajo demanda de 3D Systems en el Reino Unido y los Países Bajos imprimieron los dragones utilizando la tecnología SLS. Debido a la gran escala de los dragones, cada uno con dimensiones finales en el rango de 1,2 – 2 metros, 3D Systems sPro® 230 máquinas SLS fueron elegidas para la tarea. Con un volumen máximo de construcción de 550 mm x 550 mm x 750 mm, el sPro 230 permitió producir los dragones en un bajo número de piezas grandes que fueron montadas por expertos por el equipo de 3D Systems.

Los dragones fueron impresos en 3D en DuraForm® PA, un material de nylon poliamida 12 duradero capaz de producir un aspecto y una sensación comparables a los dragones originales. La resolución y las propiedades mecánicas de DuraForm PA lo convierten en un candidato ideal para piezas complejas con paredes delgadas o requisitos de ajuste rápido. En el caso de los dragones Kew, estas características se adaptaban tanto al requisito de funcionalidad de instalación como a los requisitos cosméticos de la restauración histórica. Una vez impresos, los dragones fueron terminados y pintados a mano en el Reino Unido por el departamento de acabado 3D Systems High Wycombe. El equipo de 3D Systems también pintó los dragones de madera finales para garantizar la consistencia visual en todo el proyecto.

“3D Systems se siente muy honrado de haber sido seleccionado para este proyecto”, dijo Lewis. “Además de la rara oportunidad de ayudar a restaurar un hito cultural e histórico, este proyecto muestra el elemento extremo de lo que hacemos. Nuestra experiencia va mucho más allá de la impresión 3D y pudimos ofrecer orientación en múltiples etapas de esta restauración, desde ingeniería y producción escalable hasta acabado”.

La gran revelación

Después de permanecer 200 años sin su ornamentación adecuada, La Gran Pagoda, Kew, finalmente será restaurada para atraer multitudes curiosas una vez más. “A lo largo de las décadas, muchos han intentado y no han podido recrear a los dragones perdidos en Kew, lo que ahora sólo ha sido posible gracias al uso innovador de la impresión 3D”, dice Hatto. “El equipo especializado desarrolló una solución innovadora, ligera y duradera, que en última instancia nos ha permitido devolver estos iconos perdidos a este preciado edificio real. Los dragones pueden ocupar el lugar que les corresponde dentro de este Patrimonio de la Humanidad de la UNESCO y volver a formar parte del horizonte de Londres durante muchos años”.

Ya sea que esté buscando ingeniería inversa completa y servicios de fabricación de bajo volumen o necesite piezas impresas 3D de giro rápido, prototipos avanzados o modelos de apariencia, 3D Systems On Demand Manufacturing puede ayudar. Las tecnologías incluyen una amplia gama de tecnología de impresión 3D y experiencia en acabados, así como herramientas convencionales cnc, fundición de uretano e inyección.

Node-Audio evoluciona el sonido Hi-Fi con altavoces impresos en 3D

Producto: Impresión SLS
Industria: Productos de consumo

Casi todas las piezas de equipos de alta fidelidad (hi-fi) buscan reclamar calidad de sonido de rendimiento en vivo, sin embargo, muchos de estos productos se fabrican de forma muy similar a sus contrapartes de altavoces de caja. El altavoz HYLIXA de Node-Audio representa un verdadero avance de la industria de salida y alta fidelidad, hecho posible mediante el uso de la impresión 3D de sinterización selectiva por láser (SLS) para producir una estructura de gabinete compleja y distintiva. Según David Evans, diseñador industrial y cofundador de Node, este nuevo y revolucionario altavoz no sólo fue producido con impresión 3D; se inspiró en las capacidades de fabricación aditiva hace posible.

Aprovechar la oportunidad para crear un producto de alto valor

Los diseñadores industriales Ashley May y David Evans entraron en el mundo de la alta fidelidad porque vieron la oportunidad de hacer algo que nunca se había hecho. Con acceso a una impresora 3D 3D 3D de 3D Systems SLS en sus instalaciones de producción, juntan sus cabezas para idear un producto de alto valor y alto rendimiento que se aprovechó del proceso aditivo.

“Fue como un nuevo comienzo para nosotros como diseñadores”, dice Evans. “Siempre hemos sabido diseñar las cosas para que pudieran fabricarse de una manera particular, mientras que este tipo de tiró todo por la ventana y abrió nuestra imaginación a lo que era posible”.

SLS, o sinterización selectiva por láser, es una tecnología de fabricación aditiva que fusiona materiales en polvo en un estilo de construcción auto compatible. Debido a este proceso de fabricación capa por capa, es posible lograr componentes mucho más complejos y de forma orgánica de lo que permiten los métodos de fabricación convencionales.

Uso de simulaciones de sonido 3D para iterar el diseño ideal

Con el componente de diseño industrial bajo control, Evans y May solicitaron la ayuda de un ingeniero acústico para guiar el desarrollo técnico de un nuevo altavoz. Su visión era crear un altavoz que produjera una calidad de audio que rivalizara con una experiencia en vivo, con una estética hermosa y escultórica.

El proceso de desarrollo comenzó con diseños 3D de Evans y May que luego se ejecutaron a través de software especializado de simulación de audio 3D para informar la siguiente iteración. A medida que la salida de simulación comenzó a confirmar el sonido de siguiente nivel que el equipo buscaba, comenzaron a crear prototipos y perfeccionarse aún más, hasta que finalmente llegaron al producto insignia de Node, HYLIXA.

Los altavoces HYLIXA cuentan con un gabinete cónico con una línea de transmisión helicoidal pendiente de patente que gira en espiral durante 1,6 metros alrededor del interior del gabinete. Esta línea es alimentada por un controlador de graves dedicado y libera el sonido a través de una ventilación circular alrededor de la mitad y el tweeter. Debido a que el gabinete redondeado está diseñado y fabricado como una sola pieza, no hay bordes para producir difracción (una interrupción de la precisión del sonido). Esto se traduce en un recorrido de sonido suave y una experiencia auditiva mejorada. Según una reseña en el sitio web de equipo de música de alta fidelidad The Ear, “el [más complejo] que obtiene la música, mejores sonidos [HYLIXA], que es lo contrario de lo que se obtiene con la mayoría de los altavoces.”

HYLIXA loud speakers by Node Audio

Maximizar la tecnología en diseño y producción

La producción y la creación de prototipos para los altavoces HYLIXA se realizan en una impresora 3D Systems sPro™ 60 SLS. Los altavoces, que se venden en un conjunto de dos, se imprimen por separado dentro del volumen de construcción de 381 mm x 330 mm x 460 mm de la impresora. Evans dice que el equipo maximiza cada construcción anidando los otros componentes dentro del gabinete de altavoces.

Los componentes de deflector frontal y de gabinete de HYLIXA están impresos en DuraForm® GF, un plástico de ingeniería lleno de vidrio que ofrece un excelente acabado superficial que es mecanizable y pintable. Como pieza principal de los altavoces, Node coloca los gabinetes HYLIXA a través de un régimen metódico de postprocesamiento para evacuar todo el material de las piezas y preparar las superficies para cualquier acabado que el cliente solicite.

“Aprendimos a través del proceso de creación de prototipos que DuraForm GF realmente funcionó muy bien acústicamente”, dice Evans. “Tiene casi una calidad cerámica al tacto, lo que nos ayudó tanto estructural como sónicamente. Como diseñadores, podríamos explotar libremente la producción slS para crear la estructura interna, pero también diseñar algo que se viera tan hermoso como suena”.

“Cada componente que imprimimos en 3D, lo hemos hecho por una razón”, dice Evans. “Hemos utilizado la tecnología para beneficiar al producto de una manera u otra, y hemos presionado para llevar todo al límite absoluto”.

Close up of SLS produced loud speaker HYLIXA

Recepción en la industria y productos futuros

Después de lanzar HYLIXA en 2019, Node envió varios pares de altavoces a expertos de la industria de alta fidelidad por su toma imparcial. Además de descripciones como “radical”, “inusual” y “seductor”, la publicación Hi-Fi+ elogia a los altavoces por “un sonido casi increíble “fuera de la caja” con “un rango dinámico excepcional”.

“Los comentarios han sido incluso mejores de lo que esperábamos, para ser honestos”, dijo Evans. Habiendo ganado credibilidad dentro de la industria, Node tiene más en la manga y está buscando crecer. Evans dice que lo que está por venir sigue siendo “muy secreto” en este momento, pero Node sigue comprometido con su proceso. La impresión 3D será una parte integral de la estrategia de la empresa para diferenciarse haciendo cosas que no se han hecho antes.

Conoce más de este caso de éxito aquí.

El caballo de Mao Zedong se convirtió en un modelo 3D, dos veces

Producto: Artec EVA
Industria: Diseño y Arte

Una figura controvertida en el mundo occidental, Mao Zedong se destaca de la multitud de líderes nacionales y otras personalidades históricas para cientos de millones de chinos. El legado del fundador de la República Popular China es venerado, estudiado a fondo y transmitido de generación en generación.

Un capítulo de la historia de vida del Gran Helmsman fue actualizado recientemente como la tecnología de escaneo 3D fue llamada a preservar para la posteridad la aparición del caballo favorito del Presidente Mao, que fue taxidermied poco después de que muriera de vejez.

¿Qué hace que el caballo sea tan especial?

La leyenda dice que el caballo, apodado Little Blue One, salvó la vida de su dueño durante la Guerra Civil China (1927-1949). ¿Quién sabe si la China moderna sería como es hoy si el caballo de Mao hubiera hecho un movimiento en el momento equivocado durante una operación de retiro militar llamada La Larga Marcha (1934-1935)?

Una tarde, mientras Mao y sus camaradas estaban siendo perseguidos por escuadrones Rivales de Kuomintang, Little Blue One con su dueño en su espalda se detuvo bajo un acantilado por el que pasaban. Nadie podía entender por qué el caballo simplemente se negó a moverse hasta que oyeron un rugido que venía de lejos – unos momentos más tarde, los combatientes enemigos zumbaron por encima. Gracias a Little Blue One, el grupo pasó desapercibido a la sombra del acantilado.

Al final de la Guerra Civil, Mao llevó su Pequeño Azul, un caballo con méritos militares en ese momento, a Beijing, donde vivió su vida en un recinto especial en el Zoológico de Beijing, hasta su muerte en 1962.

Proyecto de conservación: completado y reabierto

Poco después, el Museo de Historia Natural de Beijing ordenó un monte de taxidermia del legendario semental. Una vez hecho el trabajo, la preciosa reliquia fue llevada al Museo Memorial Revolucionario en la ciudad de Yan’an, al noroeste de China, donde el Partido Comunista tenía su sede de 1935 a 1947.

Con el paso del tiempo, pequeñas grietas comenzaron a mostrarse aquí y allá, amenazando con hacer que todo el monte se desmoronara, haciendo que la necesidad de restauración urgente realmente apremiante.

Antes de embarcarse en el proyecto, la administración del museo decidió hacer una copia digital de alta precisión del soporte para comparar su estado antes y después de la restauración. El trabajo fue encargado al socio Gold Partner de Artec 3D Beijing Onrol Technology Co., Ltd., que tenía la experiencia requerida en archiving digital tridimensional.

Elegir el escáner 3D adecuado

Todos los días contados. El escaneo debe realizarse en el menor tiempo posible. El equipo de Onrol recibió sólo un día para escanear el caballo en 3D y convertir los datos recogidos en un modelo 3D impecable.

Adjuntar objetivos al objeto para un mejor seguimiento simplemente estaba fuera de la cuestión. Incluso tocarlo estaba prohibido, por no mencionar el uso de cualquier hardware que pudiera suponer un riesgo para su condición.

No se necesitaba mucha deliberación elegir a Eva como la herramienta de escaneo 3D para el proyecto. Este escáner portátil ha sido el dispositivo de elección para el control de calidad y la preservación del patrimonio con empresas e instituciones que van desde Tesla hasta el Museo Británico.

Absolutamente seguro de usar, Eva cuenta con una bombilla flash y un conjunto de luces LED, las mismas que en las lámparas que se encuentran en cualquier habitación, para proyectar un haz de luz estructurada sobre la superficie de un objeto y detectar sus curvas con una precisión de hasta 0,1 mm.

Junto con la forma del objeto, Eva captura la textura con una profundidad de color de 24 bits por píxel, lo que da más de 16 millones de variaciones de color – más de lo que el ojo humano puede percibir. Capturar Little Blue One en color verdadero fue de vital importancia para el proyecto.

La velocidad de escaneo importaba no menos que la calidad de los escaneos. Eva puede tomar hasta 16 fotogramas, o instantáneas, por segundo. Cada instantánea cubre un área aproximadamente del tamaño de una hoja de papel de A4 a A3. Este campo de visión es ideal para trabajar con objetos medianos y grandes, como el monte de caballo. Al moverse alrededor del objeto, el usuario toma varias instantáneas con su escáner para digitalizar 3D toda la superficie en un tiempo mínimo, conservando todos los detalles necesarios.

En última instancia, el escáner es muy ligero (0,9 kg) y fácil de manejar, que fue otro factor que inclinó las escamas a favor de Eva.

Escaneo 3D en sitio

El día señalado, la montura de taxidermia de Little Blue One fue llevada a un taller designado, donde los especialistas en escaneo de Onrol realizaron escaneos, uno sosteniendo el escáner y el otro sosteniendo un portátil al que se transmitieron datos del escáner.

El equipo utilizó la fusión en tiempo real, una herramienta del software de escaneo y procesamiento 3D de Artec Studio que fusiona los datos sin procesar en escaneos sobre la marcha. En la mayoría de los casos, especialmente si el objeto es grande y cuenta con geometría compleja, se requiere un procesamiento completo después del escaneo, pero gracias a la fusión en tiempo real, el usuario puede ver una vista previa del modelo 3D final en su pantalla durante el escaneo y comprender inmediatamente si los datos recopilados están completos o si algunas partes de la superficie se han perdido. Dado que se descartó la posibilidad de una segunda sesión de escaneo, la fusión en tiempo real de Artec Studio jugó un papel indispensable.

Procesamiento simplificado de datos 3D

El procesamiento inicial de los datos sin procesar se realizó in situ, tardando sólo unos minutos. Después de verificar que habían reunido todos los datos necesarios, el equipo de Onrol se dirigió de nuevo a su oficina para procesar los escaneos en un modelo 3D de alta resolución en Artec Studio.

Artec Studio está cargado con una serie de potentes características, lo que le permite, por ejemplo, eliminar automáticamente la base en la que se escaneó el objeto, o reparar y sellar orgánicamente agujeros y huecos en sus escaneos. El software incluso se encarga del brillo durante el escaneo, ajustándolo para evitar la sobreexposición. ¿Cuándo es realmente útil? Si las condiciones de iluminación estaban lejos de ser ideales durante el escaneo, puede terminar con un lado del objeto siendo más brillante que el otro y luego tener que pasar horas arreglando eso. Con el ajuste automático del brillo, no hay nada de qué preocuparse.

El toque final, el mapeo de texturas, se realizó a un ritmo rápido, todo gracias al hecho de que la versión 14 del software, que se utilizó en el proyecto, vio un aumento del 800% en la velocidad de mapeo de texturas.

Ahora, el modelo 3D estaba listo, y sus medidas (longitud, anchura y altura) fueron tomadas.

Todos los objetivos cumplidos

Obteniendo el modelo 3D de Little Blue One, el museo procedió a la restauración. Después de que se completó, el montaje fue escaneado en 3D con Artec Eva y medido en Artec Studio de nuevo. No se encontraron discrepancias críticas entre los dos modelos 3D del caballo, lo que atestigua la alta calidad del trabajo de restauración.

El equipo de escaneo de Onrol y la administración del museo acordaron colaborar aún más para monitorear el estado de la montura restaurada para que pueda ser preservada a través de siglos por delante.

La digitalización tridimensional oportuna de artefactos preciosos es clave para conservar el patrimonio cultural y avanzar en la investigación en antropología, paleontología y una serie de campos relacionados. Si se comparten o se colocan en línea, cualquier persona interesada en ellos puede acceder a los modelos 3D de alta resolución de artefactos, independientemente de dónde se encuentran. La tecnología de escaneo 3D es un camino sencillo para crear dobles digitales de fósiles y especímenes en sitios de excavación, o exposiciones en museos, evitando la necesidad de cualquier contacto físico con el objeto. En última instancia, los modelos 3D se pueden mostrar a través de plataformas interactivas de realidad virtual, ampliando el alcance de los museos tanto a nivel local como en todo el mundo.