Revealing an Ancient Tomb’s Secrets with Geomagic Control X

Product: Geomagic Control X
Industry: Academic

When researchers at the Gaya National Research Institute of Cultural Heritage (GNRICH) wanted to know all they could about an ancient tomb discovered in Changnyeong, South Korea, they turned to 3D scanning and 3D Systems software to get the job done.

Recapturing the Past

In order to analyze all the data they could find in the tomb without having to be physically present or risk damaging the remains inside, the researchers needed to find a way to digitize the entire tomb, including four ancient human skeletons, to a high degree of accuracy and detail in full 3D.

To make matters even more challenging, they would need to have everything together in one master file for analysis, so they needed to work with a huge amount of data simultaneously. Finally, they planned to construct physical models of the human remains found in the tomb, so they needed a solution that was flexible enough for them to split up the data and optimize it for reproduction in resin.

Uncovering the mysteries of a 1500-year-old Korean tomb

Leveraging the Power of 3D

The GNRICH research team first scanned the overall shape of the tomb using a long-range outdoor scanner (the RIEGL LMS-Z390i). Then, to get close up and capture the high detail they needed on some of the human remains, they scanned a number of the bones with a Konica Minolta VIVID 910. These 3D scanners recorded all the spatial information and detailed 3D data that they needed, but this process combined for a total of 3.7 Gigabytes of data, a huge amount by any standard!

From real to virtual using 3D scanning and Geomagic Control X software

The team found that Geomagic Control X was the only software able to handle massive amounts of scan data with relative ease on their existing computers. Control X also provided them with sophisticated but simple tools to align, merge, and significantly reduce the size of the data without sacrificing scan quality or resolution. The researchers were even able to bring it all together into a common 3D coordinate system to create an exact and complete 3D virtual model of the bones in the tomb.

Rapid learning

The GNRICH researchers were able to make many scientific conclusions from the 3D scan data they processed through Geomagic Control X. After processing they used Control X to analyze the resulting data, measuring features like the volume, length, and anatomical structures of the four corpses in the tomb. Through these analyses and other techniques such as carbon dating and mitochondrial DNA (mtDNA) sequencing, the researchers were able to estimate all kinds of data such as the height, weight, age, heredity, and dietary habits of each of the buried men and women. They were even able to perform forensic analyses on the ancient bodies, concluding that the tomb’s occupants may have been killed by poison or suffocation. Remarkably, they also found evidence of Soon-jang, an ancient burial custom in which servants were buried alive with their dead masters.

Further study

Finally, the GNRICH research team used Geomagic Control X and Geomagic Design X software to prepare their 3D scan data for production as physical 3D models. These models were made from 108 different resins to closely match the physical properties of bone and to aid in further study. In 2009, the team plans to continue their investigation into causes of death, diseases, athletic abilities, and more. They also plan to make whole body models using an innovative technology to add artificial muscle and skin to their resin bone models. The team is very excited about the power that 3D scanning and technology from 3D Systems have contributed to their efforts.

MEYER WERFT Builds Cruise Ships with Help from Geomagic Control X

Product: Geomagic Control X
Industry: Automotive y Transportation

MEYER WERFT GmbH & Co. KG based in Papenburg, Germany, has achieved an excellent worldwide reputation for building special-purpose ships. They are especially well known for the construction of large, modern, sophisticated cruise ships. Over the years, the shipyard has built 45 luxury liners for customers from all over the world and every ship is unique.

To remain globally competitive, MEYER WERFT uses state-of-the-art production technology. Since 2010, they have used a Leica laser scanner for geometric analyses and image documentation. They use a LizardQ camera system to create 360-degree panoramas—up to 8,000 every year.

For 3D comparisons and precise adjustments of complex point-cloud models, MEYER WERFT metrology engineers use Geomagic Control X inspection and metrology software.

The journey from CAD blueprint to finished ship is a long one in which there are many challenges. “To get an idea of the complexity of the task we face at MEYER WERFT, you have to imagine building a complete, floating town every six months, including water and sanitation, logistics, accommodation for thousands of people, restaurants, food service, theaters, movie theaters, and a host of other leisure attractions ranging from water slides to go-karting tracks,” says Ralph Zimmermann, head of metrology/quality management at MEYER WERFT. “We use up to 30 million components to assemble every cruise ship, whereby even the smallest components, which are called sections, can have dimensions of 30 x 30 x 2.5 meters. When the ship is then assembled, everything must fit together perfectly. For the geometric measurements and point-cloud modeling that we perform every day, we use Geomagic Control X. We have a long-standing partnership with 3D Systems, the software vendor.”

Eric Wind, international senior consultant at 3D Systems, adds, “The wide range of applications for our software helps MEYER WERFT in its quality management, which is a crucial factor in the successful and on-time construction of cruise ships. Geomagic Control X inspection software delivers reliable results quickly and easily. We continually develop the software to ensure that we can continue to meet the challenging requirements of our customers in the future.”

Geometric measurement has been part of the quality management process at MEYER WERFT since 2012 and encompasses the entire production process for building a new ship. The department is responsible for all metrology tasks and works closely with the construction supervisor at the shipyard. One of the key tasks of the department is comparing target and actual states. Work begins with the scanning of components and their virtual assembly on a computer. Checking to ensure an accurate fit before assembly saves a lot of time in the shipyard as it significantly reduces the required number of physical adjustments.

3D Comparison of Target Versus Actual States Helps Ensure Accurate Fit

In shipbuilding, all materials are subject to changes caused by external influences. Welding causes changes in metal parts due to thermal action. Components are also affected by mechanical influences during transport and assembly, which can lead to deformation. Even the temperature conditions for the time of year can have an effect. A component that fit perfectly in the blueprint and during production and virtual adjustment may exhibit problematic deviations when it comes to final assembly. Target versus actual comparisons are therefore essential and are created using 3D analysis in Geomagic Control X. Current requirements include surface analyses, geometry inspections, fit checks, and virtual reality.

Surface and Deck Analyses Help Reduce Follow-Up Costs

André Schreiber, technologist in the MEYER WERFT metrology department, explains, “In our surface analyses, we aim to identify deviations from the target state in a fully-assembled section. Once everything has been captured with the laser scanner, we edit and analyze the point cloud with Geomagic Control X. The software makes the entire process much easier for us as it can handle large volumes of data. It is also suitable for all component sizes.” In addition, Geomagic Control X can be used in combination with all scanner types and technologies, enabling users to measure and validate objects geometrically and create test reports.

Figure 1: The color map of the surface analysis from Geomagic Control X shows significant differences in height and depth on the deck surface. Image © MEYER WERFT

The surface analysis clearly shows where there are real elevations and hollows on the deck surface compared with the target state. Surface unevenness of just a few millimeters on the sun deck of a cruise ship can result in puddles. Deviations of this kind can also occur below deck. For example, some areas of the ship are tiled and an uneven floor could cause floor tiles to crack.

If the commissioning shipping line were to discover such problems upon delivery of the ship, the result would be expensive repair work. Thanks to the work carried out by the metrology engineers using Geomagic Control X, such problems can be rectified at the shipyard. The relevant areas are reworked and the deck surface is leveled by calculating precisely the amount of leveling compound required—meaning no puddles and no passengers arriving at their sunbeds with wet feet.

Figure 2: The deck analysis from Geomagic Control X shows where the data of the CAD model deviates from the actual conditions on site. This knowledge is used to ensure necessary adjustments are made in good time. Image © MEYER WERFT

The deck analysis involves a similar process; the CAD model data is compared with the actual conditions on site and deviations can be identified immediately. The 3D analysis makes it possible to intervene in the construction process if, for example, adjustments are needed due to pipes being positioned at different heights. The 3D analysis also prevents structural complications at a later stage when decorating the interiors.

Geometric Inspections Help Anticipate and Address Deviations

Geometric inspections of the ship’s hull are essential. In the stabilizer used as an example, the edges of the shell surface are incongruent; the scan result is visibly different from the CAD model. In the quality assurance process, the 3D comparison is used to decide whether a deviation due to expected deformation lies within the tolerance range. Zimmermann explains: “The 3D analyses provide us with a clear picture of all deviations. It may be necessary to adjust the component in question if its functionality is restricted, if the deviations generally make it more error-prone, or if it does not comply with safety regulations.”

Fit Check Helps Save Time and Money

It is not uncommon for the client to request changes to areas of a cruise ship or its equipment during construction. Zimmermann says: “In one case, a customer wanted a higher capacity for the lifeboats, which were to be produced by a supplier in Italy. The design of the boats was therefore significantly modified and they no longer had our originally planned dimensions. At the shipyard we had to ensure that the resized boats would still fit in the intended lifeboat davits and could be lowered properly.” A simple comparison of the dimensions (length, width, height) was too risky. Given that the only other viable alternative would have been to transport a lifeboat from Italy to Germany for adjustment, instead it was scanned by MEYER WERFT engineers at the manufacturer’s premises. The metrology department then performed a fit check using Geomagic Control X. The result was positive: the new lifeboats fit perfectly and no further modifications to the ship’s structure were required.


Tools such as laser scanners and powerful software for metrology and quality management have become indispensable in modern shipbuilding. They play a key role in ensuring that components fit together perfectly when assembled, that any changes required can be made in good time, and that the ship is completed and delivered on schedule. Zimmermann explains, “We have to be able to rely on our measurement results at all times. With 3D Systems, we have a reliable partner by our side who understands our needs and is constantly improving the inspection software. This enables us at MEYER WERFT to build amazing cruise ships, ferries, and research vessels.”

easyJet Cuts Aircraft Damage Assessment Time by 80% with Geomagic Control X

Product: Control X
Industry: Aerospace

If you’ve flown anywhere in Europe in the past two decades, chances are good that you’ve flown on easyJet. This leading European low-cost airline brings travelers to more than 30 countries on 600+ routes safely and conveniently, all while offering some of the lowest fares across the continent. How do they do it? With a focus on safety, simplicity, and operational efficiency. easyJet’s engineering organization epitomizes this ethos by putting safety at the heart of everything it does and innovating to continually improve performance and reduce costs.

easyJet assesses aircraft damage faster with Geomagic Control X

Minimizing Aircraft on Ground Time

One of the most important ways that easyJet can minimize delays and keep ticket prices low is reducing Aircraft on Ground (AOG) time. Unplanned AOG events happen when any of the company’s 298 Airbus aircraft are damaged or experience mechanical failures, and can be very costly — not to mention inconvenient to passengers. It’s clear that the faster a damaged aircraft can be checked, the better it is for the airline and its passengers. 

“One of our biggest challenges is to try and reduce the AOG time of aircraft and maintain accurate records when damage occurs,” said Andrew Knight, Fleet Structures Engineer at easyJet. While rare, hail, bird strikes, and other events can potentially damage the wings and fuselage and require inspection before flying again. Checking damage from these types of events has traditionally been a low tech, manual, and time-consuming process that requires maintenance staff to assess aircraft damage using manual measuring tools such as rulers and vernier calipers. Worse still, interpreting the extent of any damage using this technique is highly subjective and not repeatable between staff members. easyJet’s structural engineering team went looking for a modern solution to speed things up and provide more accurate, traceable results.

3D scanned deviation location using Geomagic Control X

Repeatable, Accurate, Mobile 3D Inspection

“We’ve been looking for a system that is easy to use for the maintenance engineer but has the ability to provide more in-depth reports if required by support staff. It must be accurate, repeatable and most of all, mobile, as AOG events can occur anywhere within our network of 136 destinations across Europe,” Knight continued. “The biggest challenge was the software side because it needed to be a simple, easy-to-use interface to obtain a basic damage report, but powerful enough to provide more in-depth details in the support offices. 3D scanning should provide us with accurate, fast damage assessment with repeatable results independent of the experience of the user.”

For these reasons, easyJet turned to 3D Systems reseller OR3D, a UK firm with expertise in 3D scanning and Geomagic software. Robert Wells, a 3D scanning expert at OR3D, reported that “based on easyJet’s requirement to quickly scan large areas — such as the entire wing length of an Airbus A320 — on the tarmac, we recommended a portable handheld 3D scanner. And we knew Geomagic Control X™ was the right software because they needed an automated way to assess dents that was easy for their staff to learn and use.” With this solution, performing a damage assessment on the roughly 70 feet (21 meters) of an A320’s flaps takes just a few hours, compared to several days with wax rubbings on tracing paper, saving easyJet tens of thousands of Pounds/Euros per damage event.

Geomagic Control X inspection shows dent locations to easyJet quickly and accurately

Instant Reporting for Fast Documentation

Once the scans are complete, easyJet engineers can get damage reports from Geomagic Control X software on the spot. They don’t need to load CAD models or align the scan data to anything else in the software, and they don’t need to have deep metrology expertise to get reliable output. Control X uses its CAD engine to automatically create idealized geometry that meets standards for surface continuity that are defined by Airbus, and measures the scanned aircraft against that idealized geometry to provide instant results. Within minutes, easyJet engineers have a consistent, repeatable, and thoroughly documented initial damage report that lets them decide what repairs, if any, are needed before the aircraft can be placed back into service.

Powerful 3D Inspection That’s Easy to Learn

easyJet has embraced Control X for large-scale damage assessments because it’s so accessible for busy engineers with many other responsibilities. Knight remarked on this specifically, saying “engineers will not use the system if it is too complex and requires in-depth software knowledge and/or extensive training.” Control X fulfills these requirements better than any other scan-based inspection software because it’s intuitive, easy to learn, and powerful enough to handle complex measurement scenarios. Anyone familiar with using 3D software can pick up Control X and get results in a matter of minutes, with the flexibility to measure what they need to, without pre-programming or inflexible macros.

What does this new, modern approach to damage inspection mean for easyJet? “We have estimated an approximate 80% savings in time to perform assessments using the 3D systems we currently have with a potential 80% savings in currency terms,” says Knight. There are additional benefits beyond reduced AOG time and better decision-making regarding repairs as well: keeping detailed damage reports, complete with accurate scan data, can help the company years from now when it comes time to sell or return aircraft to their leaseholders.

easyJet’s use of Control X is another example of how simple, intuitive inspection software helps companies ensure quality everywhere by empowering more people to measure more things in more places. Learn more about Geomagic Control X today.