Cummins utiliza el software Geomagic y la impresión 3D en metal para restaurar un auto de carreras de 1952 y lograr que corra 50 % más rápido

Producto: Geomagic Design X/Control X
Industria: Maquinaria y Equipo Industrial

El Cummins Diesel Special n.º 28 conmocionó al mundo de las carreras en 1952 cuando consiguió la primera posición en la línea de salida en Indianápolis 500 (Indy 500) con el tiempo de vuelta más rápido de la historia. Esta hazaña, junto con las muchas otras innovaciones del auto, le permitió ganar un lugar destacado en la historia de las carreras.

Sesenta y cinco años más tarde, el n.º 28 recibió una invitación del Festival de velocidad de Goodwood en el Reino Unido para participar en la legendaria Carrera de montaña de Goodwood junto con cientos de autos modernos y clásicos. Durante la preparación del n.º 28, los ingenieros de Cummins descubrieron que la bomba de agua estaba tan corroída que probablemente no sobreviviría al evento. El auto n.º 28 necesitaba una nueva bomba de agua para llegar a Goodwood en buenas condiciones.

La bomba de agua original tenía un diseño único específico para el auto n.º 28, lo que significaba que no había una pieza de repuesto compatible. Para complicar aún más la situación, tenían que enviar el n.º 28 en cuestión de semanas, de modo que los ingenieros descartaron los métodos tradicionales de fundición en arena para producir un repuesto, ya que ese proceso tenía un tiempo de entrega estimado de 10 semanas. En cambio, los ingenieros de Cummins recurrieron a la ingeniería inversa y la fabricación aditiva (AM) de metales mediante una impresora 3D para metal ProX DMP 320 de 3D Systems con la ayuda de 3rd Dimension Industrial 3D Printing, un fabricante de metales de alta calidad especializado en impresión directa en metal (DMP) 3D. La nueva bomba de agua se imprimió en 3D en solo tres días y el proceso completo tomó cinco semanas en lugar de 10.

Una página de la historia de las carreras

El n.º 28 fue el primer auto de Indy 500 equipado con un turbocompresor y el primero cuya aerodinámica se optimizó en un túnel de viento. Corrió las cuatro vueltas de clasificación a una velocidad promedio récord de 138,010 mph.

Desde su trascendental carrera en 1952, el n.º 28 se exhibió en el Indianapolis Motor Speedway Museum y en el edificio de oficinas corporativas de Cummins. En 1969, el n.º 28 corrió una vuelta por la pista de Indy antes del inicio de la carrera para conmemorar el 50.º aniversario de Cummins. La última vez que el n.º 28 corrió fue en el Festival de velocidad de Goodwood a finales de 1990.

“Mientras preparamos el automóvil para que volviera a funcionar por primera vez en casi 20 años, descubrimos corrosión y desgastes severos en la bomba de agua”, dijo Greg Haines, líder de diseño y desarrollo del motor X15 y miembro del equipo de historia y restauración de Cummins. “En algunas partes, la carcasa estaba completamente desgastada y los depósitos de minerales que cubrían los agujeros era lo único que evitaba una filtración. Necesitábamos rápido una carcasa nueva si queríamos cumplir con nuestro compromiso de correr con el auto en Goodwood”.

Carrera para producir una nueva bomba de agua

El método básico para construir la nueva carcasa de la bomba es el mismo que se utilizó para construir la bomba original: mecanizar un patrón de plástico o madera y utilizarlo para formar un molde de arena para la fundición. Con este método, el equipo hubiese tardado alrededor de 10 semanas en construir la carcasa, lo que los dejaba afuera de Goodwood. El nuevo patrón de fundición se podría haber impreso en 3D o incluso se podría haber impreso en 3D el propio molde de impresión para reducir el plazo de entrega de la nueva carcasa de la bomba de agua. Sin embargo, el mayor aumento de productividad se produjo al evitar el proceso de fundición por completo y utilizar la ingeniería inversa y la impresión en 3D para producir la pieza final directamente en solo cinco semanas, un 50 por ciento más rápido.

Análisis

Los ingenieros de Cummins comenzaron por escanear la carcasa de la bomba de agua existente con un escáner de TC. Eligieron un escáner de TC porque la bomba contenía muchos rebajados y otras geometrías internas que habrían sido imposibles de capturar con un escáner láser u otra herramienta de procesado de imágenes de línea recta.

Inspección

Para verificar que los datos escaneados fueran precisos antes de avanzar, los ingenieros importaron los datos de la nube de puntos generados por el escáner de TC al software de inspección y metrología Geomagic Control X donde separaron y alinearon la geometría interna y externa de la bomba.

“Para un proyecto como este, solemos separar la geometría interna en espiral del cuerpo para poder modelarla como un núcleo y hacer una comparación con los datos de la nube de puntos para asegurarnos de que todo nuestro trabajo sea preciso”, explica Chris George, líder del equipo de modelos CAD para el diseño de sistemas avanzados de Cummins.

Ingeniería inversa

Con una buena geometría escaneada para iniciar su trabajo de diseño, Cummins utilizó el software de ingeniería inversa Geomagic Design X para convertir la nube de puntos en un modelo sólido no paramétrico para realizar comprobaciones de ajuste de CAD. Estas comprobaciones ayudaron al equipo de Cummins a determinar las dimensiones de ensamblaje adecuadas para el impulsor y el eje, y cómo todo encajaría y se sellaría en última instancia.

Según George, Cummins utiliza Geomagic Control X y Geomagic Design X como su software principal para la manipulación de nubes de puntos. “El software Geomagic de 3D Systems proporciona una solución completa para procesar e inspeccionar los datos de escaneado y convertirlos en un modelo sólido”, afirmó. “Los usamos para cada proyecto de ingeniería inversa, que a menudo requiere conciliaciones geométricas, análisis de la estructura y el flujo de elementos finitos, y comparaciones de modelo a escaneo reportadas a nuestros clientes de ingeniería”.

“El software Geomagic de 3D Systems proporciona una solución completa para procesar e inspeccionar los datos de escaneado y convertirlos en un modelo sólido. Usamos esta solución en cada proyecto de ingeniería inversa que realizamos”.

—Chris George, director del Equipo de modelos CAD para diseños avanzados de sistemas, Cummins

Diseño

Debido a la gran corrosión de la pieza original, Cummins no pudo utilizar el modelo creado a partir de los datos escaneados como base para la impresión 3D. En su lugar, los ingenieros de Cummins importaron el modelo no paramétrico al software de CAD 3D de PTC Creo® para que sirviera de plantilla a fin de crear un modelo paramétrico. Ante los daños físicos de la bomba escaneada, el equipo de Cummins tuvo que tomar decisiones informadas mientras modelaban el repuesto en 3D para conseguir un modelo final funcional.

Impresión 3D

Luego, enviaron este archivo al equipo de 3rd Dimension, que lo limpió, lo analizó para obtener una orientación de impresión óptima y asignó soportes para una impresión estable. Los ingenieros de 3rd Dimension dividieron y prepararon la pieza para definir el movimiento del láser durante la construcción.

Aunque la carcasa original de la bomba de agua se había fabricado con magnesio para reducir el peso, la sensibilidad del magnesio a la corrosión tras una exposición prolongada al agua y al refrigerante era un factor importante en el problema que Cummins intentaba resolver. Por lo tanto, 3rd Dimension fabricó la pieza impresa en 3D final utilizando material de acero inoxidable LaserForm 316-L en una impresora 3D para metal ProX DMP 320.

“El mayor volumen de construcción de ProX DMP 320 nos permitió tener algunas opciones adicionales con la orientación de las piezas, lo que nos ayudó a optimizar los soportes. Además, la velocidad de impresión nos permitió realizar la impresión en el tiempo que teníamos”, afirmó Bob Markley, presidente de 3rd Dimension. “ProX DMP 320 no utiliza aglomerantes para unir el material, lo que da como resultado una aleación pura que funciona como el metal real, porque es lo es. Esto beneficia el rendimiento final de las piezas debido el entorno operativo”.

Solo tres días después de recibir el archivo 3D de la geometría de la bomba de agua, 3rd Dimension envió a Cummins la carcasa completa de la bomba.

Volver a hacer historia en las carreras

La carcasa se ensambló perfectamente con los otros componentes de la bomba y nos ofreció un rendimiento que parecía como nuevo durante más de seis carreras de montaña de Goodwood. Al igual que en Indy, el n.º 28 entusiasmó a los aficionados en Goodwood y apareció en “Las 10 mejores cosas que vimos en el Festival de velocidad de Goodwood de 2017” de la revista Car and Driver.

Además, al igual que en el 50.º aniversario de Cummins en 1969, el n.º 28 tuvo un papel destacado en la celebración del 100.º aniversario de Cummins al dar una vuelta de desfile alrededor de la pista antes del comienzo de la carrera de Indy 500 de 2019.